Table of Contents

Foreword ... i

Acknowledgments .. ii

Authors .. iii

List of Acronyms and Abbreviations .. iv

Executive Summary .. xi

Chapter 1. Building Broadband .. 1

1.1 Introduction ... 1

1.2 What is Broadband? .. 2

1.3 Why is Broadband Important? .. 3

1.3.1 Impact of Broadband on Gross Domestic Product .. 3

1.3.2 Broadband, Employment and Job Creation ... 6

1.3.3 Broadband as a General Purpose Technology .. 7

1.4 What Market Trends are Fostering Broadband Deployment? .. 13

1.4.1 Trends in Supply .. 14

1.4.2 Trends in Demand .. 16

1.5 How Can Broadband Development Be Supported? ... 17

1.5.1 Viewing Broadband as an Ecosystem .. 17

1.5.2 Absorptive Capacity .. 18

1.5.3 Moving Forward .. 21

Chapter 2. Policy Approaches to Promoting Broadband Development 23

2.1 Introduction ... 23

2.2 The Public Sector’s Evolving Role in Broadband ... 23

2.2.1 Defining the Challenges: Barriers to Broadband Growth .. 24

2.2.2 Development of Country-Specific Solutions ... 26

2.3 How to Do It: Implementing Policies and Strategies to Enhance Broadband Development 27

2.3.1 General Approaches to Promote Broadband .. 27

2.3.2 Provide a National Focal Point for Broadband and Develop Broadband Capacity 31

2.3.3 Develop Policies for Both Sides of the Broadband Coin: Supply and Demand 32

2.3.4 Building Infrastructure: Promoting the Supply of Broadband ... 35

2.3.5 Encouraging Adoption: Promoting Demand for Broadband .. 40
Chapter 3. Law and Regulation for a Broadband World

3.1 Introduction .. 57
3.2 Licensing and Authorization Frameworks ... 57
 3.2.1 Technology and Service Neutrality ... 58
 3.2.2 New Authorization Options and Their Implications for Broadband 59
3.3 Spectrum Management to Foster Broadband ... 60
 3.3.1 Spectrum Licensing Regimes ... 60
 3.3.2 Flexible-Use Technical and Service Rules ... 61
 3.3.3 Spectrum Allocation and Assignment .. 61
 3.3.4 Spectrum License Renewal ... 63
 3.3.5 License-Exempt (Unlicensed) Spectrum ... 64
 3.3.6 Spectrum Refarming and the Digital Dividend 64
3.4 IP-Based Interconnection .. 66
 3.4.1 Internet Interconnection and IXPs in Developing Countries 66
 3.4.2 IP-Based Interconnection: Wholesale Charging Arrangements 68
 3.4.3 Current Wholesale Charging Arrangements 68
 3.4.4 Future Charging Mechanisms ... 69
3.5 Access to Infrastructure .. 70
 3.5.1 The Regulation versus Investment Debate ... 70
 3.5.2 Regulating Bottlenecks in the Broadband Supply Chain 70
 3.5.3 Infrastructure Sharing ... 75
3.6 Opening Vertically Integrated Markets ... 77
 3.6.1 Benefits and Costs of Vertical Integration ... 77
 3.6.2 Remedies to Anti-Competitive Conduct by a Vertically Integrated Operator ... 77
3.7 Network Neutrality ... 79
3.7.1 Goals of Net Neutrality Regulation ... 79
3.7.2 Regulatory Approaches ... 79
3.7.3 Distinction between Wireline and Mobile Broadband Services 81
3.8 Security in Cyberspace ... 82
3.8.1 Data Protection ... 83
3.8.2 Security of Critical Information Infrastructure .. 83
3.8.3 Cybercrime .. 84
3.8.4 Cybersecurity and the Need for International Coordination 85
3.9 Privacy and Data Protection .. 85
3.9.1 Scope of Privacy and Data Protection in a Broadband Environment 86
3.9.2 Awareness ... 87
3.9.3 International Enforcement and Policy Cooperation 88
3.10 Regulation of Broadband Content ... 88
3.10.1 Freedom of Opinion and Expression .. 88
3.10.2 Regulating Specific Forms of Content ... 89
3.10.3 Intellectual Property Rights ... 90

Chapter 4. Extending Universal Broadband Access and Use 92
4.1 Introduction .. 92
4.2 Universal Access Strategy and Broadband Development 93
4.2.1 Levels of Access ... 93
4.2.2 Universal Broadband Targets within the Broadband Strategy 95
4.3 Mechanisms to Drive Universal Broadband Access .. 97
4.3.1 Government Intervention ... 97
4.3.2 Improve the Legal, Regulatory, and Business Environments 100
4.3.3 Support Private Sector Network Buildout: Supply .. 101
4.4 Instruments of Fiscal Support for Universal Broadband Access 103
4.4.1 Subsidies as an Instrument of Fiscal Support ... 103
4.4.2 Sources of Funds to Support Broadband Development 107
4.4.3 Universal Access and Service Funds for Broadband Development 110
4.4.4 Best Practices for Effective Management of Flow of Funds 113
4.4.5 Reviewing the Flow of Funds .. 113

Chapter 5. Technologies to Support Deployment of Broadband Infrastructure 115
5.1 Introduction .. 115
Chapter 7. Global Footprints: Stories from and for the Developing World

7.1 Introduction .. 175
7.2 Broadband and Global Goals for Developing Countries ... 176
7.3 Broadband Bottlenecks and Opportunities in Developing Regions 178
7.4 Regional Developments .. 181
 7.4.1 East Asia and the Pacific .. 181
 7.4.2 Europe and Central Asia ... 184
 7.4.3 Latin America and the Caribbean .. 185
 7.4.4 Middle East and North Africa .. 186
 7.4.5 South Asia ... 187
 7.4.6 Sub-Saharan Africa .. 188
7.5 Countries in Special Circumstances ... 190
 7.5.1 Least Developed Countries (LDCs) .. 190
 7.5.2 Landlocked Developing Countries (LLDCs) ... 190
 7.5.3 Small Island Developing States (SIDS) ... 191
 7.5.4 Post-Conflict Countries .. 191
7.6 Broadband Experiences in Selected Countries ... 192
 7.6.1 Brazil .. 193
 7.6.2 Kenya .. 194
 7.6.3 Morocco .. 194
 7.6.4 Saint Kitts and Nevis ... 195
 7.6.5 Sri Lanka .. 196
 7.6.6 Turkey ... 197
 7.6.7 Vietnam .. 198

Appendix A: Weblinks to National Broadband Plans ... 200

Appendix B: Policies and Programs for Promoting Broadband in Developing Countries 201

Endnotes .. 209
List of Figures

Figure 1.1. Growth Effects of Various ICTs on GDP ... 4
Figure 1.2. Impact on GDP of an increase of 10 percent in broadband penetration 4
Figure 1.3. Global Fixed and Mobile Broadband Penetration Rate per 100 Inhabitants (2000-2010*) 14
Figure 1.4. Average Broadband Speed: Top 10 Countries .. 15
Figure 1.5. Broadband Ecosystem and its Impact on the Economy 18
Figure 1.6. Illustrative examples of elements of absorptive capacity 20
Figure 2.1. Reasons for Non-Adoption of Internet in Brazil and Broadband in the United States 25
Figure 2.2. Framework for Government Intervention to Facilitate Broadband Development 33
Figure 2.3. Addressing Bottlenecks: Policies on the Supply Side 36
Figure 2.4 Accuracy of Fiscal Support for Broadband Development* 50
Figure 2.5. Categories of broadband indicators .. 51
Figure 2.6. Wireline Broadband by Technologies and Speed (ADSL) in Turkey Percent, 2010 53
Figure 2.7. Average Download Speed (Two Mbit/s Packages) and Ping Time (Milliseconds), Bahrain, January-March 2011 ... 54
Figure 3.1. General Elements of a Unified and General Authorization Framework 59
Figure 3.2. Example of Multi-Service Licensing Framework: Singapore 60
Figure 5.1. Broadband Supply Chain .. 116
Figure 5.2. IP NGN Design ... 117
Figure 5.3. KPN Netherlands Transition to All-IP ... 118
Figure 5.4. Backbone Networks in Botswana .. 126
Figure 5.5. IXP Models: .. 128
Figure 5.6. Metro Fiber Ring ... 131
Figure 5.7. Wireline Broadband Technologies, Worldwide ... 132
Figure 5.8. DSL Slows Down with Distance .. 134
Figure 5.9. Cable Modem Speeds, Mbit/s ... 134
Figure 5.10. FTTx .. 136
Figure 5.11. Frequency Bands Used by CDMA2000 ... 138
Figure 5.12. Difference between Advertised and Actual Speeds, United Kingdom 145
Figure 6.1. The Three Pillars of Facilitating Broadband Demand 148
Figure 6.2. Elements of digital literacy .. 149
Figure 6.3. How people obtain ICT training, Europe, 2007 .. 149
Figure 6.4. Computer literacy in Sri Lanka, 2009 .. 151
Figure 6.5. Distribution of digital literacy across proficiency levels, Australia, 2008 .. 153
Figure 6.6. Prices of computer hardware in the United States, 1992-2009 ... 157
Figure 6.7. Cost of User Devices Relative to Per Capita GDP in Selected Sub-Saharan African Countries ... 158
Figure 6.8. Latin America (12 Countries): Internet Use by Persons Aged 15 To 74, According to Place of Access, 2007-2009 (Percentages of Total Users) .. 162
Figure 6.11. Number of Internet Users by Language ... 173
Figure 7.1. Global broadband subscriptions (per 100 people), wireline and wireless (active), 2010 175
Figure 7.2. The Eight Millennium Development Goals (MDGs) ... 176
Figure 7.3. The 10 WSIS Targets .. 177
Figure 7.4. Distribution of Wireline Broadband Subscriptions, World, 2005 and 2010 ... 178
Figure 7.5. Broadband Connections Relative to Underlying Infrastructure ... 179
Figure 7.6. Broadband and Human Development ... 180
Figure 7.7. Growth in Wireline Broadband Subscriptions, Top Countries, Percent, 2010 .. 181
Figure 7.8. Broadband Country Summaries ... 192

List of Tables

Table 1.1. Estimated broadband employment creation multipliers ... 7
Table 1.2. Necessary Upstream and Downstream Speeds for Various Services and Applications 12
Table 1.3. Wireless and wireline broadband subscriptions per 100 inhabitants, Dec. 2009 ... 14
Table 1.4. Sweden: Internet adoption proxies .. 21
Table 2.1. Publicly Stated Policy Goals for Broadband Service Delivery and Adoption .. 28
Table 2.2. Elements of Broadband Strategies .. 34
Table 2.3. Checklist of Policies to Promote the Supply of Broadband Networks .. 39
Table 2.4. Checklist of Policies to Promote Demand for Broadband .. 41
Table 2.5. Wireline and Mobile Broadband Monthly Prices, Selected Countries, USD, 2011 .. 55
Table 2.6. Sources of Official Broadband Statistics .. 56
Table 3.1. Status of net neutrality initiatives in selected countries .. 81
Table 4.1. From the Missing Link to the Digital Divide and Beyond: Low- and Middle-Income Countries 93
Table 4.2 The Multi-Pronged UAS Strategy in the Philippines .. 98
Table 4.3. Competition among Firms for Subsidies: Critical Success Factors ... 105
Table 4.4. Canada: Broadband Rural and Northern Development Pilot, Sources of Funds, 2002-2006 108
Table 5.1. Optimum Backbone Technology Choice .. 127
Table 5.2. Digital Subscriber Line (DSL) Speeds ... 133
Table 5.3. FTTP Access Protocols .. 136
Table 5.4. EV-DO Peak and Average Speeds ... 139
Table 5.5. IMT-2000 Radio Interfaces ... 140
Table 5.6. W-CDMA and HSPA Theoretical Data Rates .. 141
Table 5.7. Wi-Fi Speeds ... 143
Table 6.1. Examples of funding for school connectivity ... 152
Table 6.2. Subscriptions to bundled services, Switzerland .. 165
Table 7.1. eLAC2015 Universal Broadband Access Goals .. 185
Table 7.2. Broadband Plans and Policies in Selected South Asian Nations 188
Table 7.3. Country Case Examples of Policies and Programs for Broadband Development 199

List of Boxes
Box 1.1. Examples of Broadband’s Effects on Economic Growth around the World 5
Box 1.2. Examples of Broadband’s Potential Impacts on Innovation in R&D and Business Operations 9
Box 1.3. Mobile Health Services in Nigeria .. 13
Box 1.4. User Trends that Promote Demand ... 16
Box 1.5. The impact of broadband-enabled ICTs on the economy depends on its technological absorptive capacity ... 20
Box 2.1. Public Sector’s Role in Fostering Broadband Development—Key Lessons 26
Box 2.2. Broadband Strategies in Middle-Income Countries .. 29
Box 2.3. General Elements for Governments to Consider When Creating Policies and Strategies 31
Box 2.4. EU Experience with State Aid for Financing Broadband ... 46
Box 2.5 Municipal Broadband Initiatives .. 49
Box 3.1. Summary of Digital TV Transition and Digital Dividend Activities around the World 65
Box 3.2. Kenya IXP (KIXP): Challenges and successes of implementation of an IXP 67
Box 3.3. Nigeria: Competition Analysis in the International Internet Connectivity Market 71
Box 3.4. Computer Emergency Response Teams (CERTs) .. 83
Box 4.1. Rural Broadband Connectivity in the Dominican Republic 96
Box 4.2 Chile’s Digital Connectivity Plan ... 96
Box 4.3 Lessons from Peru .. 99
Box 4.4. Universal Service Subsidies in Mongolia .. 104
Box 4.5. Regional Communications Infrastructure Program in East and Southern Africa 109
Box 4.6. Reform of USF in the United States ... 112
Box 4.7. Reform of RCDF in Uganda ... 112
Box 5.1. Connecting the Maldives to the International Submarine Cable Network 125
Box 5.2. CDMA 450 MHz for High-Speed Rural Internet Access 139
Box 5.3. China’s Three 3G Technologies .. 141
Box 6.1. Sri Lanka’s Approach on Computer Literacy .. 151
Box 6.2. Measuring Digital Literacy in Australia .. 153
Box 6.3. Stimulation of Local Applications Development for SMEs in the Netherlands 155
Box 6.4. Device Price Trends .. 157
Box 6.5. Promoting Digital Literacy through Primary and Secondary Schools 158
Box 6.6. Trends in Low-Cost Devices .. 159
Box 6.7. Colombia 2010 Plan Vive Digital ... 167
Box 7.1. The Third Man: Encouraging Disruption in Broadband Markets 182
Box 7.2. Impact of Improved Access to International Connectivity: The Case of Moldova 184
Foreword

The world is shifting from narrowband to broadband. Services that were only available in the form of static, text-based websites ten years ago are now offered in full-motion, high-definition video. Usage-based transmission prices that were once prohibitive are now bundled into an affordable monthly “all you can eat” charge. A decade after the dot.com bubble burst, because network realities had not yet caught up with user aspirations, now a whole new generation of internet entrepreneurs are ready to take their ideas to the stock market.

Nevertheless, there remains a gap between the developed and the developing world when it comes to broadband. For instance, not a single one of the top ten economies by average broadband speed is in the Southern Hemisphere. The digital divide that was once measured in terms of differences in access to communications is now measured in terms of the different quality of access. Slow speeds for download translate into lost economic opportunity. Yet the evidence seems to suggest that where broadband is available in developing countries, it is a major contributor to economic growth. For instance, a ten per cent increase in the penetration rate of broadband in developing countries is associated with a 1.4 per cent increase in GDP per capita, higher than the equivalent relationship for developed countries. The developing world has adopted mobile phones much more readily than tethered ones, so as Mobile Broadband becomes more readily available, a further boost to growth can be expected.

A decade ago, infoDev and the World Bank’s ICT Sector Unit joined forces with the International Telecommunication Union (ITU) to develop a Handbook for regulators around the world on basic principles of telecommunication regulation. The Telecommunication Regulation Handbook subsequently became a bestseller and was updated and reissued in 2010. It formed the basis for the ICT Regulation Toolkit (www.ictregulationtoolkit.org), which now provides around one thousand downloads daily.

This new Broadband Strategies Handbook, is intended as a next generation tool for policy-makers, regulators, and other relevant stakeholders as they address issues related to broadband development. It aims to help readers, particularly those in developing countries, by identifying issues and challenges in broadband development, analyzing potential solutions to consider, and providing practical examples from countries that have addressed broadband-related matters. It goes beyond the regulatory issues and looks more broadly at the challenges of promoting and universalizing broadband access. It will also form the basis for a toolkit – www.broadband-toolkit.org – which will complement the other toolkits and technical assistance guides available from the World Bank Group.

This new Handbook has been made possible through the generous funding of the Korea Trust Fund for ICT for Development. We hope that it will meet the requirements of developing country policy-makers and regulators for sound advice on developing national strategies for broadband. But we also hope that it will provide incentives for users to share their own experiences, via the Toolkit website, of what works well. Consider this Handbook, then, as a living resource that will grow as the broadband market worldwide grows.

Valerie D’Costa
Program Manager
infoDev

Philippe Dongier
Sector Manager
ICT Sector Unit
Acknowledgments

This report was carried out by Telecommunications Management Group Inc (TMG) and other consultants under the supervision of Tim Kelly (infoDev) and Carlo Rossetto (ICT Unit) of the World Bank Group. The report has benefited from the inputs, ideas, and review of many World Bank Group colleagues and management as well as peer reviewers. The authors are grateful to Mohsen Khalil, formerly Director of the Bank’s Global Information and Communication Technologies (GICT) Department, for his guidance and support throughout the preparation of this report. The authors also thank Philippe Dongier, Sector Manager, ICT Sector Unit and Valerie D’Costa, Program Manager, infoDev, for their comments and support. For their review and comments, the authors and project team thank Francois Auclert, Kevin Donovan, Victor Mulas, Elena Kvochko, Wonki Min, James Neumann, Duncan Wambogo Omole, Christine Qiang, Siddhartha Raja, David Satola, Lara Srivastava, Mark Williams and Masatake Yamamichi from the World Bank Group, as well as external reviewers Michael Best from Georgia Tech (US), Mandla Msimang from Pygma Consulting (South Africa), Yongsoo Kim from the Korea Communications Corporation (KCC) and Paul de Sa from the Federal Communications Commission (FCC).

As part of our work, we convened an Advisory Group comprised of Ben Akoh, James Losey, Jeff Eisenach, Lars Krogager, Marianne Treschow, Nancy Sundberg, Parvez Iftikhar, Sam Patridge, Rodrigo Abdalla F. de Sousa, Rohan Samarajiva, Sascha Meinrath, Sharil Tarmizi, Sverre Holt-Francati, Torbjorn Fredriksson, and Youlia Lozanova. We would like to thank these participants for their valuable input and ideas in shaping the initial table of contents and for attending our consultation meeting and “writeshop” in August 2009.

Case studies were prepared to support the work of Chapter 7. We thank the authors of these case studies—Diane Anius (St. Kitts and Nevis), Mandla Msimang (Kenya), Michael Jensen (Brazil), Samantha Constant (Morocco), Helani Galpaya (Sri Lanka), Çağatay Telli (Turkey), and Tran Minh Tuan (Vietnam). In addition, we are grateful for the contributions made by Rob Frieden on financing strategies and technologies to support broadband, by Victor Mulas on absorptive capacity and by Rohan Samarajiva and Helani Galpaya on measurement, monitoring and evaluation. We also thank the Organization of Economic Cooperation and Development (OECD) and the International Telecommunication Union for their comments and ideas, especially on the measurement section of Chapter 2.

This Handbook, case studies and other reports have been generously funded by the Korean Trust Fund (KTF) on Information and Communications for Development (ICT4D). The KTF is a partnership between the government of Korea (Rep.) and the World Bank. Its purpose is to advance the ICT4D agenda, with the goal of contributing to growth and reducing poverty in developing countries. The report has also benefited from funding from the UK Department for International Development (UK). The Handbook is part of a longer-term project to create a broadband toolkit (see www.broadband-toolkit.org), an online resource for regulators and policy-makers. Future updates of the handbook, as well as the full text of the case studies, practice notes, indicators and training materials will be posted there.

The authors retain sole responsibility for any residual errors.
Authors

This report was prepared and input documents coordinated by Telecommunications Management Group, Inc. (TMG). TMG is a telecommunications and information technology consulting firm providing regulatory, policy, economic, technical and financial advice. Established in 1992, TMG is comprised of a team of regulatory experts, lawyers, economists, market analysts, business development and investment specialists, engineers, and spectrum management specialists.

TMG advises public and private sector clients on information and communications technology (ICT) related issues, and also provides assistance to regulators and policy-makers on regulatory and policy reform matters. TMG has advised more than 60 countries on regulatory reform issues in Africa, the Caribbean and Latin America, Asia, Europe and the Middle East. In addition, TMG has worked on regulatory matters with international and regional organizations involved in ICT issues.

The TMG team that worked on this project includes: Flavia Alves, Kari Ballot-Lena, Jeff Bernstein, Joel Garcia, Janet Hernandez, Daniel Leza, Sofie Maddens-Toscano, Jorge Moyano, William Wiegand, David Wye and Amy Zirkle, as well as outside consultants Calvin Monson, Michael Minges and Bjorn Wellenius.
List of Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2G</td>
<td>Second Generation mobile telecommunications system</td>
</tr>
<tr>
<td>3G</td>
<td>Third Generation mobile telecommunications systems</td>
</tr>
<tr>
<td>3GPP</td>
<td>3G Partnership Project</td>
</tr>
<tr>
<td>4G</td>
<td>Fourth Generation mobile telecommunications systems</td>
</tr>
<tr>
<td>ACE</td>
<td>Africa Coast to Europe</td>
</tr>
<tr>
<td>ACTA</td>
<td>Anti-Counterfeiting Trade Agreement</td>
</tr>
<tr>
<td>ADSL</td>
<td>Asymmetric DSL</td>
</tr>
<tr>
<td>ATNF</td>
<td>Apollo Telemedicine Networking Foundation</td>
</tr>
<tr>
<td>APEC</td>
<td>Asia-Pacific Economic Cooperation</td>
</tr>
<tr>
<td>APIs</td>
<td>Application Programming Interfaces</td>
</tr>
<tr>
<td>App</td>
<td>Application</td>
</tr>
<tr>
<td>ARPU</td>
<td>Average Revenue Per User</td>
</tr>
<tr>
<td>ARRA</td>
<td>American Recovery and Reinvestment Act</td>
</tr>
<tr>
<td>ASO</td>
<td>Analog Switch-Off or Switch-Over of analog broadcast television</td>
</tr>
<tr>
<td>BAK</td>
<td>Bill and Keep</td>
</tr>
<tr>
<td>BDUK</td>
<td>Broadband Delivery UK</td>
</tr>
<tr>
<td>BEREC</td>
<td>Body of European Regulators of Electronic Communications</td>
</tr>
<tr>
<td>BFWA</td>
<td>Broadband Fixed Wireless Access</td>
</tr>
<tr>
<td>BPL</td>
<td>Broadband over Powerline</td>
</tr>
<tr>
<td>BPO</td>
<td>Business Process Outsourcing</td>
</tr>
<tr>
<td>BRAND</td>
<td>Broadband for Rural and Northern Development (Canada)</td>
</tr>
<tr>
<td>BRIC countries</td>
<td>Brazil, Russia, India, and China</td>
</tr>
<tr>
<td>BSC</td>
<td>Base Station Controller</td>
</tr>
<tr>
<td>BSNL</td>
<td>Bharat Sanchar Nigam Ltd</td>
</tr>
<tr>
<td>BT</td>
<td>British Telecommunications or Telecom</td>
</tr>
<tr>
<td>BTA</td>
<td>Botswana Telecommunications Authority</td>
</tr>
<tr>
<td>BTO</td>
<td>Build, Transfer and Operate</td>
</tr>
<tr>
<td>BTS</td>
<td>Base Transceiver Station</td>
</tr>
<tr>
<td>CAF</td>
<td>Connect America Fund</td>
</tr>
<tr>
<td>CAP</td>
<td>Community Access Program</td>
</tr>
<tr>
<td>CAPEX</td>
<td>Capital Expenditures</td>
</tr>
<tr>
<td>CATV</td>
<td>Cable Television</td>
</tr>
<tr>
<td>CBC</td>
<td>Community Broadband Centers</td>
</tr>
<tr>
<td>CBI</td>
<td>Capacity-Based Interconnection</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CDC</td>
<td>Caisse des Dépôts et Consignations</td>
</tr>
<tr>
<td>CDMA</td>
<td>Code Division Multiple Access (family of mobile communication standards)</td>
</tr>
<tr>
<td>CERTs</td>
<td>Computer Emergency Response Teams</td>
</tr>
<tr>
<td>CII</td>
<td>Critical Information Infrastructure</td>
</tr>
<tr>
<td>CLCs</td>
<td>Computer Learning Centers</td>
</tr>
<tr>
<td>CMTS</td>
<td>Cable Modem Termination System</td>
</tr>
<tr>
<td>CPE</td>
<td>Customer Premise Equipment</td>
</tr>
<tr>
<td>CPEA</td>
<td>Cross-Border Privacy Enforcement Arrangement</td>
</tr>
<tr>
<td>CPNP</td>
<td>Calling Party Network Pays</td>
</tr>
<tr>
<td>CRTC</td>
<td>Canadian Radio-television Telecommunications Commission</td>
</tr>
<tr>
<td>DBKL</td>
<td>Kuala Lumpur City Hall</td>
</tr>
<tr>
<td>DFID</td>
<td>UK Department for International Development</td>
</tr>
<tr>
<td>DOCSIS</td>
<td>Data Over Cable Service Interface Specification (cable modem standard)</td>
</tr>
<tr>
<td>DSL</td>
<td>Digital Subscriber Line</td>
</tr>
<tr>
<td>DSLAM</td>
<td>Digital Subscriber Line Access Multiplexer</td>
</tr>
<tr>
<td>DTH</td>
<td>Direct-to-Home (satellite)</td>
</tr>
<tr>
<td>DTT</td>
<td>Digital Terrestrial Television</td>
</tr>
<tr>
<td>DWDM</td>
<td>Dense Wave Division Multiplexing</td>
</tr>
<tr>
<td>EAFRD</td>
<td>European Agricultural Fund for Rural Development</td>
</tr>
<tr>
<td>EASSy</td>
<td>Eastern Africa Submarine Cable System</td>
</tr>
<tr>
<td>EBS</td>
<td>Educational Broadcasting System</td>
</tr>
<tr>
<td>ECTEL</td>
<td>Eastern Caribbean Telecommunications Authority</td>
</tr>
<tr>
<td>EDGE</td>
<td>Enhanced Data rates for GSM Evolution</td>
</tr>
<tr>
<td>EHRs</td>
<td>Electronic Health Records</td>
</tr>
<tr>
<td>EIB</td>
<td>European Investment Bank</td>
</tr>
<tr>
<td>ESCAP</td>
<td>Economic and Social Commission for Asia and the Pacific</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>EV-DO</td>
<td>CDMA2000 Evolution Data Optimized (mobile communication standard)</td>
</tr>
<tr>
<td>FBO</td>
<td>Facilities-Based Operator</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission (United States)</td>
</tr>
<tr>
<td>FDD</td>
<td>Frequency Division Duplexing</td>
</tr>
<tr>
<td>FDI</td>
<td>Foreign Direct Investment</td>
</tr>
<tr>
<td>FICORA</td>
<td>Finnish Communications Regulatory Authority</td>
</tr>
<tr>
<td>FIRST</td>
<td>Forum of Incident Response and Security Teams</td>
</tr>
<tr>
<td>FMCG</td>
<td>Fast Moving Consumer Goods</td>
</tr>
<tr>
<td>FOSI</td>
<td>Family Online Safety Institute</td>
</tr>
<tr>
<td>FTTx</td>
<td>Includes different types of access to fiber optic networks, including Fiber-to-the-Node (FTTN), Fiber-to-the-Cabinet or Curb (FTTC), Fiber-to-the-Premises (FTTP), which may be Fiber-to-the-Home (FTTH) or Fiber-to-the-Building or Business (FTTB)</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>FUST</td>
<td>Fund for Universal Telecommunications (Brazil)</td>
</tr>
<tr>
<td>GB</td>
<td>Gigabyte</td>
</tr>
<tr>
<td>Gbit/s</td>
<td>Gigabit per Second</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GHz</td>
<td>Gigahertz</td>
</tr>
<tr>
<td>GPEN</td>
<td>Global Privacy Enforcement Network</td>
</tr>
<tr>
<td>GPOBA</td>
<td>Global Partnership on Output-Based Aid</td>
</tr>
<tr>
<td>GPRS</td>
<td>General Packet Radio Service</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile communications (mobile communication standard)</td>
</tr>
<tr>
<td>GSMA</td>
<td>GSM Association</td>
</tr>
<tr>
<td>HFC</td>
<td>Hybrid Fiber Coaxial (cable)</td>
</tr>
<tr>
<td>HIPSSA</td>
<td>Harmonization of ICT Policies in Sub-Sahara Africa</td>
</tr>
<tr>
<td>HKBN</td>
<td>Hong Kong Broadband Network</td>
</tr>
<tr>
<td>HSBB</td>
<td>High Speed Broadband</td>
</tr>
<tr>
<td>HSPA</td>
<td>High Speed Packet Access</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communications Technology</td>
</tr>
<tr>
<td>ICT4D</td>
<td>ICT for Development</td>
</tr>
<tr>
<td>IDA</td>
<td>International Development Association/ Infocomm Development Authority</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IM</td>
<td>Instant Messaging</td>
</tr>
<tr>
<td>IMT-2000</td>
<td>International Mobile Telecommunications-2000 (family of mobile communication standards)</td>
</tr>
<tr>
<td>IMT-Advanced</td>
<td>International Mobile Telecommunications-Advanced (family of mobile communication standards)</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IPR</td>
<td>Intellectual Property Rights</td>
</tr>
<tr>
<td>IPTV</td>
<td>Internet Protocol Television</td>
</tr>
<tr>
<td>IPv4</td>
<td>Internet Protocol Version 4</td>
</tr>
<tr>
<td>IPv6</td>
<td>Internet Protocol Version 6</td>
</tr>
<tr>
<td>ISOC</td>
<td>Internet Society</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ISP</td>
<td>Internet Service Provider</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunication Union</td>
</tr>
<tr>
<td>IXP</td>
<td>Internet Exchange Point</td>
</tr>
<tr>
<td>JICA</td>
<td>Japan International Cooperation Agency</td>
</tr>
<tr>
<td>KACE</td>
<td>Kenya Agricultural Commodity Exchange</td>
</tr>
<tr>
<td>KADO</td>
<td>Korean Agency for Digital Opportunity</td>
</tr>
<tr>
<td>KAM</td>
<td>Knowledge Assessment Methodology</td>
</tr>
<tr>
<td>kbit/s</td>
<td>Kilobits per Second</td>
</tr>
<tr>
<td>KDN</td>
<td>Kenya Data Networks</td>
</tr>
<tr>
<td>kHz</td>
<td>Kilohertz</td>
</tr>
<tr>
<td>KISA</td>
<td>Korean Information Security Agency</td>
</tr>
<tr>
<td>Km</td>
<td>Kilometers</td>
</tr>
<tr>
<td>LAC</td>
<td>Latin America and the Caribbean</td>
</tr>
<tr>
<td>LACNIC</td>
<td>Latin American and Caribbean Internet Addresses Registry</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LDCs</td>
<td>Least Developed Countries</td>
</tr>
<tr>
<td>LLDCs</td>
<td>Landlocked Developing Countries</td>
</tr>
<tr>
<td>LLU</td>
<td>Local Loop Unbundling</td>
</tr>
<tr>
<td>LTE</td>
<td>Long Term Evolution (mobile communication standard)</td>
</tr>
<tr>
<td>MB</td>
<td>Megabyte</td>
</tr>
<tr>
<td>Mbit/s</td>
<td>Megabit per Second</td>
</tr>
<tr>
<td>MCMC</td>
<td>Malaysian Communications and Multimedia Commission</td>
</tr>
<tr>
<td>MDGs</td>
<td>Millennium Development Goals</td>
</tr>
<tr>
<td>MEWC</td>
<td>Malaysia’s Ministry of Energy, Water and Communication</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>MoU</td>
<td>Memorandum of Understanding</td>
</tr>
<tr>
<td>MPLS</td>
<td>Multiprotocol Label Switching</td>
</tr>
<tr>
<td>MVNO</td>
<td>Mobile Virtual Network Operator</td>
</tr>
<tr>
<td>MyICMS</td>
<td>Malaysian Information, Communications, and Multimedia Services</td>
</tr>
<tr>
<td>NBI</td>
<td>National Broadband Initiative (Malaysia)</td>
</tr>
<tr>
<td>NBN</td>
<td>National Broadband Network (Australia)</td>
</tr>
<tr>
<td>NBP</td>
<td>National Broadband Plan (United States)</td>
</tr>
<tr>
<td>NBS</td>
<td>National Broadband Strategy (Finland)</td>
</tr>
<tr>
<td>NBS</td>
<td>National Broadband Scheme (Ireland)</td>
</tr>
<tr>
<td>NGA</td>
<td>Next Generation Access</td>
</tr>
<tr>
<td>NGN</td>
<td>Next Generation Network</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NGOs</td>
<td>Non-governmental Organizations</td>
</tr>
<tr>
<td>NPRM</td>
<td>Notice of Proposed Rulemaking</td>
</tr>
<tr>
<td>NPV</td>
<td>Net Present Value</td>
</tr>
<tr>
<td>NSI</td>
<td>National Satellite Initiative (Canada)</td>
</tr>
<tr>
<td>NSOs</td>
<td>National Statistical Organizations</td>
</tr>
<tr>
<td>NTIA</td>
<td>National Telecommunications and Information Administration (United States)</td>
</tr>
<tr>
<td>OBA</td>
<td>Output-based Aid</td>
</tr>
<tr>
<td>OECD</td>
<td>Organization for Economic Co-operation and Development</td>
</tr>
<tr>
<td>OFDM</td>
<td>Orthogonal Frequency Division Multiplexing</td>
</tr>
<tr>
<td>OLPC</td>
<td>One Laptop Per Child</td>
</tr>
<tr>
<td>OLT</td>
<td>Optical Line Terminal</td>
</tr>
<tr>
<td>ONT/ONU</td>
<td>Optical Network Terminal/Optical Network Unit</td>
</tr>
<tr>
<td>OPEX</td>
<td>Operating Expenses</td>
</tr>
<tr>
<td>OSP</td>
<td>Online Service Provider</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PDA</td>
<td>Personal Digital Assistant</td>
</tr>
<tr>
<td>PII</td>
<td>Personally Identifiable Information</td>
</tr>
<tr>
<td>PIP</td>
<td>Personal Internet Page</td>
</tr>
<tr>
<td>PLMN</td>
<td>Public Land Mobile Network</td>
</tr>
<tr>
<td>PMID</td>
<td>Partnership for Measuring ICT for Development</td>
</tr>
<tr>
<td>POP</td>
<td>Point of Presence</td>
</tr>
<tr>
<td>PPIAF</td>
<td>World Bank’s Private-Public Infrastructure Advisory Facility</td>
</tr>
<tr>
<td>PPP</td>
<td>Public/Private Partnership</td>
</tr>
<tr>
<td>PSTN</td>
<td>Public Switched Telephone Network</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
</tr>
<tr>
<td>RAN</td>
<td>Radio Access Network</td>
</tr>
<tr>
<td>RCIP</td>
<td>Regional Communications Infrastructure Program</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio Frequency Identification</td>
</tr>
<tr>
<td>RTR</td>
<td>Rundfunk & Telekom Regulierungs (Austria)</td>
</tr>
<tr>
<td>RUS</td>
<td>Rural Utilities Service (United States)</td>
</tr>
<tr>
<td>SADC</td>
<td>South African Development Community</td>
</tr>
<tr>
<td>SAFE</td>
<td>South Africa Far East</td>
</tr>
<tr>
<td>SAT3/WASC</td>
<td>South Atlantic 3/Western Africa Submarine Cable</td>
</tr>
<tr>
<td>SBO</td>
<td>Service-Based Operator</td>
</tr>
<tr>
<td>SC-FDMA</td>
<td>Single Carrier-Frequency Division Multiple Access</td>
</tr>
<tr>
<td>SDH</td>
<td>Synchronous Digital Hierarchy</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SEACOM</td>
<td>Southern and East Africa Cable System</td>
</tr>
<tr>
<td>SE-ME-WE</td>
<td>South East Asia-Middle East-West Europe</td>
</tr>
<tr>
<td>SENA</td>
<td>Servicio Nacional de Aprendizaje</td>
</tr>
<tr>
<td>SIDS</td>
<td>Small Island Developing States</td>
</tr>
<tr>
<td>SIM</td>
<td>Subscriber Identity Module</td>
</tr>
<tr>
<td>SLCERT</td>
<td>Sri Lanka Computer Emergency Response Team</td>
</tr>
<tr>
<td>SMEs</td>
<td>Small and Medium Enterprises</td>
</tr>
<tr>
<td>SMP</td>
<td>Significant Market Power</td>
</tr>
<tr>
<td>SMS</td>
<td>Short Message Service</td>
</tr>
<tr>
<td>SONET</td>
<td>Synchronous Optical Network</td>
</tr>
<tr>
<td>SUBTEL</td>
<td>Subsecretaria de Telecomunicaciones</td>
</tr>
<tr>
<td>Tbit/s</td>
<td>Terabit per Second</td>
</tr>
<tr>
<td>TDD</td>
<td>Time Division Duplexing</td>
</tr>
<tr>
<td>TDF</td>
<td>Telecommunications Development Fund</td>
</tr>
<tr>
<td>TD-SCDMA</td>
<td>Time Division–Synchronous Code Division Multiple Access (mobile communication standard)</td>
</tr>
<tr>
<td>TEAMS</td>
<td>The East African Marine System</td>
</tr>
<tr>
<td>TPE</td>
<td>Trans-Pacific Express Cable Network</td>
</tr>
<tr>
<td>TRA</td>
<td>Telecommunications Regulatory Authority</td>
</tr>
<tr>
<td>TRAI</td>
<td>Telecommunications Regulatory Authority of India</td>
</tr>
<tr>
<td>UAS</td>
<td>Universal Access and Service</td>
</tr>
<tr>
<td>UASF</td>
<td>Universal Access and Service Fund</td>
</tr>
<tr>
<td>U-CAN</td>
<td>Ubiquitous Canadian Access Network</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telecommunications System (see WCDMA)</td>
</tr>
<tr>
<td>UNCTAD</td>
<td>United Nations Conference on Trade and Development</td>
</tr>
<tr>
<td>UNECE</td>
<td>United Nations Economic Commission for Europe</td>
</tr>
<tr>
<td>USAID</td>
<td>United States Agency for International Development</td>
</tr>
<tr>
<td>USF</td>
<td>Universal Service Fund</td>
</tr>
<tr>
<td>USO</td>
<td>Universal Service Obligation</td>
</tr>
<tr>
<td>USOF</td>
<td>Universal Service Obligation Fund</td>
</tr>
<tr>
<td>VANS</td>
<td>Value Added Network Service</td>
</tr>
<tr>
<td>VDSL</td>
<td>Very High Speed DSL</td>
</tr>
<tr>
<td>VLE</td>
<td>Virtual Learning Environment</td>
</tr>
<tr>
<td>VoB</td>
<td>Voice Over Broadband</td>
</tr>
<tr>
<td>VoD</td>
<td>Video on Demand</td>
</tr>
<tr>
<td>VoIP</td>
<td>Voice Over Internet Protocol</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>VSAT</td>
<td>Very Small Aperture Terminals (satellite)</td>
</tr>
<tr>
<td>W3C</td>
<td>World Wide Web Consortium</td>
</tr>
<tr>
<td>WCDMA/UMTS</td>
<td>Wideband Code Division Multiple Access (family of mobile communication standards)</td>
</tr>
<tr>
<td>WDM</td>
<td>Wavelength Division Multiplexing</td>
</tr>
<tr>
<td>WI</td>
<td>Wireless Intelligence</td>
</tr>
<tr>
<td>Wi-Fi</td>
<td>Wireless Fidelity – a Wireless Local Area Network standard based on the Institute of Electrical and Electronics Engineers' (IEEE) 802.11 standards</td>
</tr>
<tr>
<td>WiMAX</td>
<td>Worldwide Interoperability for Microwave Access (fixed and mobile communications standard)</td>
</tr>
<tr>
<td>WRC-07</td>
<td>2007 World Radiocommunication Conference</td>
</tr>
<tr>
<td>WSIS</td>
<td>World Summit on the Information Society</td>
</tr>
<tr>
<td>WTO</td>
<td>World Trade Organization</td>
</tr>
<tr>
<td>xDSL</td>
<td>Includes different types of Digital Subscriber Line, including ADSL and VDSL</td>
</tr>
</tbody>
</table>
Executive Summary

The Broadband Strategies Handbook is a guide for policy-makers, regulators, and other relevant stakeholders as they address issues related to broadband development. It aims to help readers, particularly those in developing countries, by identifying issues and challenges in broadband development, analyzing potential solutions to consider, and providing practical examples from countries that have addressed broadband-related matters.

The Handbook consists of seven chapters and two appendices that look at how broadband is defined, why it is important and how its development can be encouraged. Throughout the Handbook, broadband is viewed as an ecosystem consisting of both supply and demand components, both of which are equally important if the expansion of broadband networks and services is to be successful. In addressing the challenges and opportunities that broadband gives rise to, the Handbook discusses the policies and strategies that government officials and others should consider when developing broadband plans, including the legal and regulatory issues, what technologies are used to provide broadband, how to facilitate universal broadband access, and how to generate demand for broadband services and applications.

Chapter 1, Building Broadband, introduces the concepts of broadband by defining the term broadband more conventionally (i.e., speed or functionality), as well as explaining how this Handbook seeks to define the term moving forward in which broadband is seen as an enabling platform. This chapter examines why broadband, both as an ICT and an enabling platform, is important and focuses on how it can help to transform a country’s economic development and improve employment growth, provided that effective policies are put in place that encourage the use of broadband as an essential input by all sectors of the economy. Chapter 1 also identifies the main trends fostering the deployment of broadband networks (supply-side) and the adoption of broadband services and applications (demand-side). Lastly, this chapter offers a framework—the broadband ecosystem—to assist policy-makers and stakeholders in viewing broadband policies in a more holistic manner and as a means to ensure the greatest impact throughout the economy and society.

Chapter 2, Policy Approaches to Promoting Broadband Development, identifies the issues that governments and the private sector will face when developing policies and programs to support broadband development. It discusses policies and strategies for promoting the build-out of broadband networks, as well as ways to encourage the use of broadband services and applications, particularly in populations that may have limited knowledge of or interest in broadband. In that context, the impacts of broadband on other sectors (education, health, banking, environment and cybersecurity) are discussed. The chapter also addresses the options for funding broadband development strategies and identifies the issues associated with measuring the effectiveness of policies designed to promote network build-out and user demand.

Chapter 3, Law and Regulation in a Broadband World, discusses the key policies and regulatory trends that policymakers and regulators are considering to foster broadband. As the world moves to a converged information and communication technology (ICT) environment, countries are revisiting their traditional legal and regulatory frameworks to introduce reforms, and are developing new laws and regulations to address some of the supply and demand issues associated with broadband development. This chapter covers a wide range of policy issues, including liberalization of licensing frameworks; spectrum management policies to maximize wireless broadband; Internet Protocol (IP) interconnection regulation; policies to promote competition in the various segments of the broadband supply chain; vertical integration in a converged environment; network neutrality; cybersecurity and data protection; and regulation of online content.
Chapter 4, Extending Universal Broadband Access and Use, discusses what roles governments should play in promoting universal broadband access when market mechanisms do not meet goals for broadband access and use on their own. The chapter seeks to define a broadband development strategy capable of addressing market failures, to provide an overview of what policymakers can do to address perceived shortfalls in the market, and to work towards achieving universal broadband service. It discusses the universal service objectives that a government strategy may pursue; the role of private-led competitive markets in achieving these objectives; the role of the government in narrowing or eliminating gaps between markets and the country’s development needs; and how effective government strategies can be designed to meet such challenges. It finally examines the use of fiscal resources to support private supply of broadband, including the choice of instruments, use of subsidies and the different mechanisms that can be used to collect and disburse funds for subsidy.

Chapter 5, Technologies to Support Deployment of Broadband Infrastructure, focuses on the supply side of the broadband ecosystem. It describes the various wireline and wireless technologies now being used to build out broadband infrastructure, including examples of broadband deployments throughout the world. The objective of the chapter is to provide policymakers with an overview of how broadband networks work and what components make them up. It describes the broadband supply chain from a topological perspective starting from international connectivity, and progressing to regional, national and finally local access deployment solutions. It describes the technologies being deployed in each of these segments, including fiber optics, satellite, microwave systems, mobile wireless and traditional copper wire. Finally, Chapter 5 addresses some of the implementation issues associated with these technologies, including open access, quality of service and spectrum constraints.

Chapter 6, Driving Demand for Broadband Networks and Services, recognizes that although supply-side issues are important, simply building networks does not guarantee that they will be used or used most effectively. This chapter thus focuses on the issue of demand facilitation; what can government and the private sector do to spur the use and adoption of broadband networks and services by consumers. In particular, this chapter identifies various policies that may be implemented where demand is stifled because consumers are not aware of the benefits of broadband, broadband is not affordable and/or broadband is not attractive or relevant to them. This chapter also highlights the importance of public-private cooperation to facilitate demand and increase broadband access to a wider number of users worldwide.

Chapter 7, Global Footprints: Stories from and for the Developing World, addresses the main challenges developing countries face in deploying broadband networks, including underdeveloped infrastructure; low income; significant differences between rural and urban areas; constrained inter- and intra-modal competition; and weakness of regulatory and legal frameworks. This chapter assesses the broadband bottlenecks and opportunities found in developing countries, and discusses the importance of improving broadband infrastructure and leveraging existing infrastructure to create greater competition in the broadband market. Chapter 7 further highlights the status of broadband development in different developing regions around the world and summarizes broadband experiences in Brazil, Kenya, Morocco, Saint Kitts and Nevis, Sri Lanka, Turkey and Vietnam.
Chapter 1. Building Broadband

1.1 Introduction

In just the past decade, the world of information and communications technologies (ICT) has changed dramatically, evolving from a means by which information can quickly travel from point to point into an enabling platform for countless new and expanded personal, social, business and political uses. In short, the Internet has become an integral part of people’s lives. Broadband networks allow consumers to access the Internet at speeds up to or exceeding 100 megabits per second (Mbit/s) over wired connections in their homes and offices, and they can use their broadband-enabled mobile phones and other devices for a wide range of activities, including surfing the World Wide Web, two-way real-time video chat, purchasing goods and services online, streaming video or music, and conducting financial transactions.

But broadband is not just about improving the speed at which users can read online news, play video games, and engage in social networking, although these are useful drivers of demand and do provide benefits to users. It is an enabling platform that allows developers and individual users to enhance existing services and to develop previously unimaginable tools that improve business and society. The benefits of broadband can expand beyond the ICT sector itself, reverberating throughout the economy and acting as an essential input for all other sectors, including education, health, transportation, energy and finance. Its role as a transformative technology is similar to the impact that electricity has had on productivity, growth and innovation over the last two centuries, with the potential to redefine how economies function. Broadband can also be a critical enabler for civil and political engagement and for the exercise of fundamental rights such as freedom of expression and opinion. However, in order to achieve broadband’s full potential, its reach must be expanded in both developing and developed economies. Governments must implement effective policies that spur construction of broadband networks, as well as encourage the uptake of broadband services in all sectors of the economy.

The roll-out of broadband requires significant investment from the private sector, as well as support from the public sector. It will also require a long-term perspective because the benefits of broadband will not occur overnight. For developing countries with limited resources, it may be difficult to focus on broadband when many of their communities do not have schools for children, safe drinking water, or access to hospitals and health care. However, broadband offers countries an enabling platform and new tools to foster growth, extend public services, enhance businesses, and benefit their people. Making broadband a priority within a country’s development agenda will be necessary to ensure that the digital divide between developed and developing countries is not extended further. In crafting a broadband strategy, however, countries should ensure that the use of public funds is supported by sound economic analysis and the benefits of such investments in broadband are weighed against benefits of investing in other areas, such as energy, health or education. As such, reliance on market-based solutions for the deployment and uptake of broadband is generally preferable to government investment in order to avoid straining public finances.

This first chapter of the Handbook is designed to “set the stage” for the discussion in subsequent chapters of the various ways in which government policymakers and the private sector can promote greater deployment of broadband networks and services, particularly in developing countries. It first describes what broadband is and how it may be defined. Next, it explains why broadband is important by identifying how broadband contributes to the growth and development of a country’s economy, and noting, in particular, the findings of several studies pointing to broadband’s impact on gross domestic product (GDP) and employment. Then, the trends that characterize the development of broadband are
considered. Lastly, this chapter addresses the approaches governments can use to support the development of broadband, by focusing on both the deployment of broadband networks (supply-side) and the adoption of broadband services and applications (demand-side). Overall, this chapter seeks to demonstrate that broadband can enable growth and productivity throughout the economy, provided that appropriate and specific policies are designed, developed, and effectively implemented.

1.2 What is Broadband?

Despite its worldwide growth and promotion by policymakers, network operators and content providers, broadband does not have a single, standardized definition. The term “broadband” may refer to multiple aspects of the network and services, including: 1) the infrastructure or “pipes” used to deliver services to users; 2) high-speed access to the Internet; and/or 3) the services and applications available via broadband networks, such as Internet protocol television (IPTV) and voice services that may be bundled in a “triple play” package with broadband Internet access. Further, many countries have established definitions of broadband based on speed, typically in Mbit/s or kilobits per second (kbit/s), or based on the types of services and applications that can be used over a broadband network (i.e., functionality). Due to each country’s unique needs and history, including economic, geographic and regulatory factors, definitions of broadband vary widely.

Traditionally, however, broadband has often been defined in terms of data transmission speed (i.e., the amount of data that can be transmitted across a network connection in a given period of time, typically one second, also known as the data transfer rate or throughput). Defining broadband in terms of speed has been an important element in understanding broadband, particularly since the data transfer rate determines whether users are able to access basic or more advanced types of content, services and applications over the Internet.

However, attempts to define broadband in terms of speed present certain limitations. First, broadband speed definitions vary among countries and international organizations, and generally ranging from download data transfer rates of at least 256 kbit/s on the low end (e.g., India, South Africa, International Telecommunication Union (ITU) and Organization for Economic Co-operation and Development (OECD)) to faster than 1.5 Mbit/s on the high end (e.g., Canada). Second, definitions based on speed may not keep pace with technology advances or with the speeds services and applications require to function properly. In other words, what is considered “broadband” today may be seen as too slow in the future as more advanced applications technologies are developed. Thus any speed-based definition of broadband will need to be updated over time. Third, such definitions may not reflect the speeds realized by end users such that the speeds advertised by commercial broadband providers may be much higher than the speeds set by the government as broadband or vice versa. For example, while Colombia’s broadband speed definition is 1 Mbit/s, its average broadband connection speed is already 1.8 Mbit/s.

Due to the limitations of definitions based on speed, some countries (e.g., Brazil) and international organizations (e.g., OECD) have decided or proposed not to categorize broadband in terms of speed, but are instead looking at broadband in terms of functionality—focusing on what can and cannot be done with a certain type of connection. However, establishing a definition of broadband based only on functionality may make the term overly subjective. A legal definition of broadband Internet access based on speed is easy to apply: if broadband is defined as at least 1.5 Mbit/s of download speed, then a 2 Mbit/s connection is broadband while a 1 Mbit/s connection is not. When broadband is defined in terms of functionality, the distinction between what is and is not broadband becomes less
Chapter 1. Building Broadband

straightforward. Is being able to watch a YouTube video equivalent to a broadband connection? What if it takes minutes to buffer and starts and stops throughout?

In considering what broadband is and how it should be defined, this section and the Handbook as a whole view broadband more holistically as a high-capacity ICT platform that improves the variety, utility and value of services and applications offered by a wide range of providers, to the benefit of users, society, and multiple sectors of the economy. Thus, from a policy perspective, broadband should be viewed more broadly as an enabling ICT platform that can potentially influence the entire economy, and thus may act as a general purpose technology (GPT) used as a key input across sectors. In order to capture the full range of potential benefits, it may be useful for policymakers to consider broadband as an ecosystem framework comprising both supply-side (i.e., network platforms) and demand-side considerations (e.g., e-government initiatives, development of services and applications, promoting adoption of broadband by users) considerations. To encourage the diffusion of broadband-enabled innovations throughout the economy, policymakers should also consider the absorptive capacity of various sectors, including health, education, energy and transportation. Unless all these elements—supply, demand, and absorptive capacity—are coordinated, broadband’s impact on the economy as a whole will be constrained.

1.3 Why is Broadband Important?

With the appropriate policies in place, broadband is a transformative platform that impacts the ICT sector as well as other sectors of the economy. While some may disagree on the precise economic and social benefits that can be specifically attributed to broadband, and may challenge the studies that have suggested a large impact, few can argue against the fact that broadband has dramatically changed our personal lives, our businesses and our economies. Moreover, as an enabling ICT platform and potential GPT, broadband can facilitate growth and innovation in the ICT sector and throughout the economy, serving as a vital input for each sector that strengthens the economy as a whole. The multiplier effect of broadband can drive GDP, productivity, and employment growth; however, policies that support the supply and demand elements of the ecosystem, as well as the absorptive capacity to learn and incorporate broadband capabilities into other sectors, must all be in place in order to fully realize such benefits (see section 1.5).

1.3.1 Impact of Broadband on Gross Domestic Product

Due to its potentially wide-ranging impacts, and its ability to provide easier access to information that increases efficiencies and productivity in the economy, it is unsurprising that increased use of broadband networks and services has been found to produce positive outcomes that reverberate throughout a country, particularly involving GDP. A frequently cited World Bank study found that low-income and middle-income countries experienced “about a 1.38 percentage point increase in GDP for each 10 percent increase in broadband penetration” between 2000 and 2006. This study further found that the development impact of broadband on emerging economies is greater than in high-income countries, which “enjoyed a 1.21 percentage point increase in per capita GDP growth” per 10 percent increase in broadband penetration. The study also demonstrates that broadband has a potentially higher growth effect than other ICTs, including wireline telephony, mobile telephony and the Internet, as shown in Figure 1.1. Broadband’s predominance may be unexpected considering that, over the last decade, mobile telephony has been the fastest growing ICT worldwide, with a 2010 global penetration rate of 76.2 out of 100 persons.
Chapter 1. Building Broadband

Figure 1.1. Growth Effects of Various ICTs on GDP

![Growth Effects of Various ICTs on GDP](image)

Source: Adapted from Qiang and Rossotto, (2009) Information and Communications for Development: Extending Reach and Increasing Impact, Chapter 3: Economic Impacts of Broadband, p. 45.

The World Bank is not alone in its findings. Management consulting firm McKinsey & Company estimated that “a 10 percent increase in broadband household penetration delivers a boost to a country’s GDP that ranges from 0.1 percent to 1.4 percent.” Additionally, a study of OECD countries by consulting firm Booz & Company found that among high-income countries, there is a strong correlation between average annual GDP growth and broadband penetration wherein “[c]ountries in the top tier of broadband penetration have also exhibited 2 percent higher GDP growth than countries in the bottom tier of broadband penetration.”

Although numerous studies have found a positive impact on economic growth, the estimate of its actual magnitude varies. For example, a ten percent increase in broadband penetration has been found to increase economic growth from a low of range of 0.24 percent to a high of 1.50 percent (Figure 1.2).

Figure 1.2. Impact on GDP of an increase of 10 percent in broadband penetration

<table>
<thead>
<tr>
<th>Source</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katz *</td>
<td>0.24%</td>
<td>0.26%</td>
</tr>
<tr>
<td>McKinsey (average studies) **</td>
<td>0.60%</td>
<td>0.70%</td>
</tr>
<tr>
<td>Analysys Mason ***</td>
<td>1.10%</td>
<td></td>
</tr>
<tr>
<td>Qiang & Rossotto +</td>
<td>1.21%</td>
<td>1.38%</td>
</tr>
<tr>
<td>Czernich et al. ++</td>
<td>0.90%</td>
<td>1.50%</td>
</tr>
</tbody>
</table>

Notes: * Only includes Germany; ** Average of five country studies, including United Kingdom, Australia, New Zealand, Malaysia and a Middle Eastern country, from various sources 2003 and 2004, and Qiang and Rossotto 2009 study; *** Limited to mobile broadband impact in India; + Various countries, upper range applies to developing countries and lower range to developed countries; ++ Sample of 20 OECD countries.

While these studies provide important insight into the growth effects of broadband, data collection and further systematic research and analysis in this area are needed, particularly for developing countries. Currently, there is ample anecdotal evidence of the effects of broadband on economic growth, with some cases highlighted in Box 1.1. However, these cases provide only limited evidence of the impact that broadband has on the economy as a whole. It is also important to note that investment in broadband or policies fostering its deployment or adoption are unlikely to produce significant GDP gains without complementary investments or policies in other sectors, notably education, innovation, civic participation and health care. However, even with the implementation of appropriate policies, the impacts of broadband on growth in certain areas may be limited. For example, developing countries may be in less need of telemedicine to improve health outcomes and more in need of low-tech and inexpensive solutions, such as mosquito nets and de-worming pills. Additionally, despite providing a new educational resource, broadband can also create a new distraction if careful controls are not in place that limit Internet access to non-academic sites such as Facebook, YouTube and file-sharing websites.

Box 1.1. Examples of Broadband’s Effects on Economic Growth around the World

<table>
<thead>
<tr>
<th>Country</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>Over the last several years, broadband access studies in Canada have focused on the importance of broadband to economic growth and development, particularly in rural areas. In 2005, for example, Industry Canada commissioned a survey to be conducted in the rural areas of British Columbia regarding subscribers’ views of the significance of broadband access. More than 80 percent of all business respondents reported that their businesses would be negatively affected if they did not have broadband access and over 18 percent stated they would not be able to operate their businesses without broadband. Additionally, 62 percent of business owners reported that broadband increased productivity to some extent, with a majority of them stating that broadband increased productivity by over 10 percent.</td>
</tr>
<tr>
<td>China</td>
<td>Between 2010 and 2013, China’s network operators, China Unicom, China Telecom and China Mobile, are expected to invest an estimated CNY 62 billion (USD 9 billion) in the creation of a single wireline broadband access network providing speeds of 1 Mbit/s or more. These investments will be necessary considering that the number of wireline broadband subscribers in China is expected to reach 182 million by 2013, which represents growth of nearly 77 percent between 2010 and 2013. Set against these figures, the impact of broadband on China’s GDP is anticipated to be substantial. Dial-up and broadband Internet together are expected to contribute a combined 2.5 percent to GDP growth for every 10 percent increase in penetration.</td>
</tr>
<tr>
<td>India</td>
<td>A study released by Analysys Mason in December 2010 on the deployment of wireless broadband in India found that each percentage point increase in mobile broadband penetration in India could increase India’s GDP by 0.11 percent by 2015, which would yield INR 162 billion (USD 3.8 billion). The study broke down the impact on GDP based on direct contributions (revenues from services and devices); second order contributions (revenues/cost-savings from increased worker productivity); and ecosystem contributions (revenues from value-added and</td>
</tr>
</tbody>
</table>
the remaining households. A 2010 study by Analysys Mason reviewed the likely direct and indirect effects the broadband policy might have on South Africa’s economy, finding that wireless broadband is expected to increase the country’s GDP by 1.8 percent, or over ZAR 72 billion (USD 9.4 billion) by 2015. In addition, wireless broadband is expected to create about 28,000 new jobs directly, not including further jobs outside the communications industry. As a result, the direct effect of wireless broadband alone (i.e., spending on broadband services and broadband-enabled devices) is expected to increase the GDP of South Africa by 0.71 percent by 2015, or ZAR 28.5 billion (USD 3.7 billion). However, the biggest impact on GDP is expected to come from productivity and efficiency gains.

1.3.2 Broadband, Employment and Job Creation

Broadband enables job creation through three main channels: 1) direct jobs created to deploy the broadband infrastructure; 2) indirect and induced jobs created from this activity; and 3) additional jobs created as a result of broadband network externalities and spillovers. Each of these channels focus on the employment of unskilled, skilled and highly skilled workers. Direct jobs relate primarily to civil works and construction of broadband infrastructure, which involves more low-tech positions. Indirect and induced jobs require various levels of skilled workers. However, network-effects (i.e., spillover) jobs are mainly high-skill jobs requiring specific technical knowledge and education. Indeed, broadband spillover employment effects are not uniform. Instead, they tend to concentrate in service industries, such as financial services, health care, etc. It can also produce some effects in middle-skill jobs, such as in manufacturing, but usually related to the use of ICT, requiring ICT-skills.

Numerous studies have estimated the impact on broadband in each of these job creation categories for specific countries by calculating employment multipliers for each of the categories (Table 1.1). While these studies are country-specific and cannot be applied directly to other nations, they provide an estimate of the potential employment gains that could result from effective broadband development. A simple average of these estimates indicates that potential broadband job creation results in 2.78 indirect and induced jobs per direct broadband construction job created and 1.17 spill-over additional jobs created per direct job. This means that broadband can create between 2.5 and 3 additional jobs per direct broadband employment. Some studies have estimated the impact of broadband on the employment creation rate. For instance, Katz (2009) estimated that an increase of about 8 percentage points of broadband penetration in 12 Latin American countries could result in almost 8 percent increase on average over their employment rate.
Table 1.1. Estimated broadband employment creation multipliers

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Scope</th>
<th>Type I</th>
<th>Type II</th>
<th>Network Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crandall et al.</td>
<td>2003</td>
<td>US</td>
<td>...</td>
<td>2.17</td>
<td>...</td>
</tr>
<tr>
<td>Katz et al.</td>
<td>2008</td>
<td>Switzerland</td>
<td>1.4</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Atkinson et al.</td>
<td>2009</td>
<td>US</td>
<td>...</td>
<td>3.60</td>
<td>1.17</td>
</tr>
<tr>
<td>Katz et al.</td>
<td>2009a</td>
<td>US</td>
<td>1.83</td>
<td>3.43</td>
<td>...</td>
</tr>
<tr>
<td>Libenau et al.</td>
<td>2009</td>
<td>UK</td>
<td>...</td>
<td>2.76</td>
<td>...</td>
</tr>
<tr>
<td>Katz et al.</td>
<td>2009b</td>
<td>Germany</td>
<td>1.45</td>
<td>1.93</td>
<td>...</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>1.56</td>
<td>2.78</td>
<td>1.17</td>
</tr>
</tbody>
</table>

Note: Type I (Direct + Indirect)/Direct; Type II (Direct + Indirect + Induced)/Direct

Sources: Katz 2009, citing Crandall et al. (2003), Katz et al. (2008), Atkinson et al. (2009), Katz et al. (2009a), Libenau et al. (2009) and Katz et al. (2009b).

As with broadband’s effects on GDP, further data collection and analysis are needed to confirm the positive impact that broadband has on employment growth. Aside from the studies identified above, some researchers have reported anecdotal evidence of how broadband development has stimulated the job market, including in the European Union (EU), Brazil, Malaysia and the United States.

- In the EU, a study estimated that broadband could create more than two million jobs throughout Europe by 2015, and result in an increase to GDP of at least EUR 636 billion.\(^{25}\)
- In Brazil, broadband was found to add up to 1.4 percent to the employment growth rate.\(^{26}\)
- The Malaysian Communications and Multimedia Commission (MCMC) estimated in 2008 that achieving 50 percent broadband penetration by 2010 could create 135,000 new jobs in the country.\(^{27}\) The MCMC further projected that the number of jobs created would reach 329,000 by 2022, based on 50 percent broadband penetration rate.
- Overall, an evaluation of multiple studies showed that for every 1,000 additional broadband users, approximately 80 new jobs are created.\(^{28}\)
- A nationwide study in the United States examined how broadband deployment affects job creation, determining that availability of broadband at a community level added more than one percent to employment growth.\(^{29}\)

Additionally, it should be noted that although broadband is likely to have overall positive effects on job growth, short-term job losses may result from broadband-enabled improvements in productivity due to process optimization and capital-labor substitution. However, countries have confirmed that broadband creates many more jobs than it displaces in the longer term. For example, a study commissioned by the European Commission found a positive impact on employment in 2006 with a net creation of 105,000 jobs throughout Europe due to broadband deployment.\(^{30}\)

1.3.3 Broadband as a General Purpose Technology

Overall, broadband’s importance may be fully realized as it becomes a GPT. While the notion of broadband as a GPT has been addressed in recent discussions of broadband and development, as well as in government-funded stimulus plans, the concept of GPTs was introduced on a more general basis in the 1990s, and includes three key characteristics:
• Pervasive use in a wide range of sectors;
• Technological dynamism (inherent potential for technical improvements); and
• As GPTs evolve and improve, they spread throughout the economy, bringing about general productivity gains.\(^{31}\)

In broad terms, GPTs are technologies that enable new and different opportunities across an entire economy, rather than simply addressing one problem or one sector. According to the OECD, GPTs “fundamentally change how and where economic activity is organized.”\(^{32}\) Common examples include electricity, the internal combustion engine, and railways.

Although the initial conception of GPTs did not include the ICT sector, later research has considered ICTs with broadband as the enabling platform, through the lens of the GPT concept. This view of broadband as a potential GPT has also been embraced in publications from, or on behalf of, the World Bank, infoDev and the European Commission, as well as in academia.\(^{33}\)

When taken holistically, broadband as a platform—coupled with services, applications, content and devices—has the potential to satisfy the three criteria mentioned above, resulting in a GPT. First, broadband can be used as a key input in nearly all industries. Second, broadband has the potential for technological dynamism through the development of new technologies, as well as improvements to the capacity and speed of broadband systems. For example, the average global broadband connection speed at the end of 2010 was slightly below 2 Mbit/s, with the top 20 countries having average speeds of over 7 Mbit/s, which allows services and applications requiring higher bandwidth, such as streaming video, to develop and become accessible to users.\(^{34}\) Third, broadband has the potential to enable and engender new organizational methods that result in more general increases in productivity. Global architecture firms, for example, may have offices around the globe, but team members working on a new building design no longer have to be in the same place or even the same time zone. By using broadband connections to share work products, the team can be completely decentralized.

As broadband’s potential as a GPT is realized, it becomes an enabler of technology-based innovation and growth throughout the economy by businesses and individuals, as well as by academic, governmental and other institutions. Businesses and individuals are able to use currently available broadband technologies and services to create entirely new applications and services in areas such as advertising, e-commerce, online video, social networking and financial services, including online banking and loans.\(^{35}\) Innovation in these areas is important for the growth of new markets in developed economies, and for the transfer of technology to emerging economies, which can benefit from e-services, particularly mobile health and mobile banking services.\(^{36}\) Broadband-enabled services also allow the public sector to access new communities and regions, as well as deliver higher quality services more efficiently and at lower costs, including in online education, telemedicine and civic participation. The following provides several specific examples of how broadband can enable growth in and beyond the ICT sector in both developed and developing countries.

Research and development in any sector

Broadband can have a particularly strong impact on research and development (R&D) leading to innovative technologies, as well as enabling new ICTs to lead to further innovations.\(^{37}\) Additionally, broadband may allow businesses to move more rapidly in the product development cycle from the idea stage to final product.\(^{38}\) For example, a company could have teams in various locations around the world working on related portions of the same project, using broadband connectivity to provide seamless communication and information sharing.
Box 1.2. Examples of Broadband’s Potential Impacts on Innovation in R&D and Business Operations

- Enable instant sharing of knowledge and ideas
- Lower barriers to product and process innovation via faster and less expensive communications
- Accelerate start-ups
- Improve business collaboration
- Enable small business to expand their R&D and collaborate in larger R&D consortia
- Reduce time from idea to final product
- Foster greater networking
- Promote “user-led innovation”

Increasing broadband penetration may also enable more than just large firms, governments and academic research institutions to develop innovative products. For example, Apple’s iPhone App Store has over 100,000 registered application developers, most of which are small companies. In 2008, those small developers produced five of the top 10 paid applications in the App Store.

Cloud Computing: Reducing costs for businesses

For enterprises of all sizes, the costs of IT infrastructure, including hardware, software, and technical support, can be significantly reduced with the adoption of cloud computing technologies. Cloud computing generally allows for instant access to and storage of applications and data via broadband connectivity. Currently, almost every traditional business application has an equivalent application in the cloud, which means that cloud services can effectively replace the more conventional, and typically more expensive, method of accessing and storing applications and data through software installed locally on one’s own computer or in-house server. Additionally, cloud computing reduces or eliminates the need for on-site IT staff since these data processes are handled remotely. Other potential benefits of cloud computing for businesses include:

- Reduced need for up-front investment since cloud-computing is typically based on a pay-as-you-go pricing model;
- Lower operating costs since the service provider does not need to provision capacities according to the peak load;
- Easy access through a variety of broadband-enabled devices; and
- Reduced business risks and maintenance expenses, which shifts business risks (such as hardware failures) and maintenance costs to infrastructure providers, who often have better expertise and are better equipped for managing these risks.

In 2011, Harvard Business Review Analytic Services conducted a global survey of nearly 1,500 businesses and other organizations on their current and planned use of cloud computing, as well as the perceived benefits and risks associated with cloud computing services. About 85 percent of respondents stated that their organizations will be using cloud computing tools on a moderate or extensive basis over the next three years in order to take advantage of the benefits of cloud computing, including improved speed and flexibility of doing business, lower costs and new avenues for growth, innovation and collaboration. Only seven percent of respondents stated that their businesses had been using cloud
computing for over five years; however, these early adopters reported that real business value had already been created, including faster time to market, lower operation costs and easier integration of new operations.

In addition, cloud computing itself can provide for new business models and avenues for revenue. For example, Amazon, the largest U.S. online retailer, began offering cloud computing services to businesses and individuals in 2002 because the company had excess computing and storage capacity. In order to accommodate the busiest shopping week of the year in the United States, Amazon had to purchase a much larger amount of capacity than was required for the rest of the year. Rather than let the extra capacity go unutilized, Amazon began renting out its system to others, thereby becoming a “utility” for computing services.

Despite the promise of cloud computing as a source of substantial cost savings for enterprises, there are various issues that may limit its impact, particularly lack of access to broadband services. Cloud computing requires access to fast, reliable and affordable broadband in order to achieve its maximum functions. In addition, cloud computing raises certain potential network and data security concerns. Other significant concerns included reliability of the technology, lack of interoperability with existing IT systems and lack of control over the system.

Retail and Services Sectors

Particularly for the retail and services sectors where customer relations averages 50 percent of a company’s activities, broadband can improve the ability to reach new customers and maintain contact with existing customers. As such, the ability to send multimedia email or use targeted online advertising to keep and attract customers can increase a company’s sales while using less capital and labor inputs than would be required for postal mailings or door-to-door sales calls. Broadband also enables self-service websites, such as online airline reservations or e-government services, as well as remote services such as online technical support and video conferencing. For example, broadband is essential for developing countries, particularly India, Mauritius, and China, which are the main off-shoring destinations for IT technical support and business process outsourcing.

In addition, sophisticated services, enabled by broadband and the development of ICTs, have become not just an input for trade in goods, but a final export for direct consumption. Success stories such as call centers in Kenya; business consulting and knowledge-processing offices in Singapore; accountancy services in Sri Lanka; and human resources processing firms in Abu Dhabi are different forms of this phenomenon. Recent research has found that sophisticated service exports are becoming an economic driver of growing importance in developing countries and may be an additional channel for sustained high growth. The deployment and adoption of broadband also has the potential to provide an additional conduit for economic growth through service exports.

Manufacturing and Industrial Sectors: Supply-chain Management

Broadband allows businesses to more efficiently manage their supply chains by automatically transferring and managing purchase orders, invoices, financial transactions and other activities. As with any information-based business activity, broadband can enable faster, more secure and more reliable processing than previously possible. Broadband connectivity saves processing and transfer time along the supply chain, as well as substantially increases competitiveness, by helping businesses reduce stock levels, optimize the flow of goods and improve the quality of final products. Since manufacturing and industrial sectors have been the main driver of overall economic growth in developing countries for the last 15 years, broadband is expected to play a vital role for developing countries to improve
productivity in these sectors and ensure the ability for companies to effectively compete in a global market.\(^5\)

Education: Building human capital

In order to fully realize broadband’s potential for economic growth, it is necessary to have an educated workforce trained in the use of ICTs. Additionally, there is a self-reinforcing effect between education and broadband since broadband can help improve fundamental educational outcomes, including learning how to better use broadband. For example, the services and applications available over broadband networks have been shown to improve basic educational performance in a review of 17 impact studies and surveys carried out at national, European and international levels by the European Commission.\(^5\) These studies found that broadband and ICTs positively impacted learning outcomes in math, science and language skills.\(^5\) In addition to facilitating basic skills, broadband improves the opportunities for those with ICT training; they generally have a higher chance of finding employment, as well as higher earning potentials.\(^5\) Bridging the connectivity divide is critical to ensuring that today’s students—and tomorrow’s high-tech workforce—can take advantage of these benefits.

One way to expand access to broadband and ICTs in rural and remote areas is through the deployment of mobile education labs. Mobile education labs, which may simply be vehicles fitted with broadband connectivity, computer equipment and learning facilities, allows educators to drive to various schools throughout the week.\(^5\) In addition, these mobile education labs can provide ICT training for adults to improve digital literacy. As opposed to transporting children in rural areas to where broadband facilities exist or waiting until the network is built out to them, these mobile facilities offer a cost-effective way to reach rural populations.\(^5\) The United Nations has noted the success of mobile schools in Mongolia, where 100 mobile “tent” schools have been introduced in 21 provinces, as well as in Bolivia.\(^5\) Bolivia has implemented a bilingual education program for three of the most widely used indigenous languages, which has been expanded to include indigenous children in remote areas.\(^6\) In Morocco, the government implemented a program called NAFID@ to help over 100,000 teachers afford wireline or mobile broadband connections, which has allowed the teachers to receive training in the use of ICTs in the classroom, as well as to use e-learning programs and online libraries to improve class lessons.\(^6\)

Health care sector

Health-based broadband applications and services are significantly improving health and medical outcomes around the world, particularly for patients in remote areas and those with limited mobility through e-health and mobile health (m-health) initiatives.\(^5\) Considering that there are fewer than 27 million doctors and nurses for the more than six billion people in the world—and only 1.2 million doctors and nurses in the lowest income countries—harnessing mobile technologies will be a valuable tool for healthcare practitioners to reach patients. As mobile broadband develops and spreads in developing countries, examples of the benefits are already becoming clear (see Box 1.3).\(^6\)

Although basic voice and data connections can be useful in improving health and medical care, broadband connectivity is necessary to capture the full potential of e-health services, including telemedicine that enables real-time audio and video communications between patients and doctors, as well as between healthcare providers. Improvements in telemedicine and other e-health initiatives rely on increasing bandwidth capacity, more storage and processing capabilities and higher levels of security to protect patient information.\(^6\) As noted in Table 1.2, the U.S.-based California Broadband Task Force estimated that telemedicine will require speeds between 10 and 100 Mbit/s and high definition telemedicine will require broadband speeds of over 100 Mbit/s.\(^5\) The current wireline and wireless infrastructure in most countries is insufficient to take advantage of the e-health opportunities in the digital economy. This is particularly important for developing countries where ensuring access to and
adoption of wireline and wireless broadband networks would be particularly useful for including those who have been left out of more traditional healthcare models.

Table 1.2. Necessary Upstream and Downstream Speeds for Various Services and Applications

<table>
<thead>
<tr>
<th>500 kbit/s to 1 Mbit/s</th>
<th>5 Mbit/s to 10 Mbit/s</th>
<th>100 Mbit/s to 1 Gbit/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Voice over IP</td>
<td>• Telecommuting (converged services)</td>
<td>• HD Telemedicine</td>
</tr>
<tr>
<td>• SMS</td>
<td>• File Sharing (large)</td>
<td>• Multiple Educational Services</td>
</tr>
<tr>
<td>• Basic Email</td>
<td>• IPTV-SD (multiple channels)</td>
<td>• Broadcast Video full HD</td>
</tr>
<tr>
<td>• Web Browsing (simple sites)</td>
<td>• Switched Digital Video</td>
<td>• Full IPTV Channel Support</td>
</tr>
<tr>
<td>• Streaming Music (caching)</td>
<td>• Video on Demand SD</td>
<td>• Video on Demand HD</td>
</tr>
<tr>
<td>• Low Quality Video (highly compressed)</td>
<td>• Broadcast SD Video</td>
<td>• Gaming (immersion)</td>
</tr>
<tr>
<td></td>
<td>• Video Streaming (2-3 channels)</td>
<td>• Remote Server Services for Telecommuting</td>
</tr>
<tr>
<td></td>
<td>• HD Video Downloading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Low Definition Telepresence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Gaming</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Medical File Sharing (basic)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Remote Diagnosis (basic)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Remote Education</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Building Control & Management</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Mbit/s to 5 Mbit/s</th>
<th>10 Mbit/s to 100 Mbit/s</th>
<th>1 Gbit/s to 10 Gbit/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Web Browsing (complex sites)</td>
<td>• Telemetry</td>
<td>• Research Applications</td>
</tr>
<tr>
<td>• Email (larger size attachments)</td>
<td>• Educational Services</td>
<td>• Telepresence using uncompressed high definition video streams</td>
</tr>
<tr>
<td>• Remote Surveillance</td>
<td>• Broadcast Video SD and some HD</td>
<td>• Live event digital cinema streaming</td>
</tr>
<tr>
<td>• IPTV-SD (1-3 channels)</td>
<td>• IPTV-HD</td>
<td>• Telemedicine remote control of scientific/medical instruments</td>
</tr>
<tr>
<td>• File Sharing (small/medium)</td>
<td>• Gaming (complex)</td>
<td>• Interactive remote visualization and virtual reality</td>
</tr>
<tr>
<td>• Telecommuting (ordinary)</td>
<td>• Telecommuting (high quality video)</td>
<td>• Movement of terabyte datasets</td>
</tr>
<tr>
<td>• Digital broadcast video (1 channel)</td>
<td>• High Quality Telepresence</td>
<td>• Remote supercomputing</td>
</tr>
<tr>
<td>• Streaming Music</td>
<td>• HD Surveillance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Smart/Intelligent Building Control</td>
<td></td>
</tr>
</tbody>
</table>

This was the case in Rwanda where a three-phase e-health project was delayed due to lack of high-speed broadband connectivity. The first phase of the initiative, which established an electronic data storage system that permitted sharing of patient information among three hospitals, was completed without delay. However, the final two phases involving video conferencing and a real-time telemedicine system were put on hold for a year until a broadband Internet connection could be established to connect the three hospitals with a fiber optic cable network.
Box 1.3. Mobile Health Services in Nigeria

In Nigeria, the government lacked sufficient public health information to efficiently allocate health care services to over 800 villages that lacked primary health care. A public-private partnership, Project Mailafia, was established to alleviate this situation. Project Mailafia sends teams of mobile health care providers to remote villages, where they treat patients and collect health data that support better public health decision-making and resource allocation. The mobile health workers collect the data on ruggedized netbooks, and transfer the data to area clinics. The clinics then upload the data to a central database using Worldwide Interoperability for Microwave Access (WiMAX) and Wi-Fi technologies.

Source: Intel, Realizing the Benefits of Broadband (2010).

E-government applications

E-government covers a broad range of applications that transform government processes and ways that it connects and interacts with businesses and citizens. This allows citizens to better participate in society and improves the efficiency, accountability and effectiveness of government programs and processes. Broadband is important for e-government as it provides the foundation for public administration networks that allow processes to flow more smoothly. E-government can also help to drive demand for broadband (see 6.4.1).

Countries around the world are providing increasing access to online services, including the provision of basic services, the use of multimedia technology to promote two-way exchanges and consultation with citizens on public policy issues. Although the Republic of Korea, the United States, and Canada take the top three places in terms of number of online government services available, the UN found that several countries have made significant progress over the last two years, including Bahrain, Chile, Colombia and Singapore. The UN also found that the use of mobile phones for e-government services, such as alert messages, applications or fee payments, are almost as popular in developing countries as they are in developed countries.

1.4 What Market Trends are Fostering Broadband Deployment?

Broadband connectivity is expanding globally. Between 2005 and 2010, the average wireline broadband penetration rate grew 59 percent—from 3.3 to 8 subscribers per 100 inhabitants. The number of mobile broadband subscriptions worldwide is expected to reach the one billion mark in 2011, with total mobile subscriptions topping five billion. As a result of such growth, the estimated number of wireline broadband subscriptions reached approximately 555 million in 2010, up from 471 million in 2009. A sizable number of these new subscriptions come from Brazil, Russia, India, and China (known as the BRIC countries), which have collectively doubled their subscriber base in the last four years. Likewise, the number of wireless broadband users has also expanded rapidly. In 2010, the number of third generation (3G) mobile broadband subscriptions rose to 940 million, an increase from 703 million in 2009. As Figure 1.3 shows, the number of wireless broadband subscribers exceeded wireline broadband subscribers for the first time in 2008, and 2010 estimates show that there were 70 percent more mobile broadband subscribers than wireline broadband subscribers.

Despite these advances, however, a “digital divide” remains between developed and developing countries; only 4.4 per 100 people in developing countries are broadband subscribers compared to 24.6 in developed countries. In effect, wireline broadband deployments in many developing countries are a decade behind those in developed countries. Given the cost and resources required for the deployment of wireline broadband, wireless broadband is more likely to be the broadband solution for users in developing countries, particularly in rural and remote areas.
1.4.1 Trends in Supply

Developments in the types of technologies and business models used to deploy broadband network infrastructure are allowing operators to supply more people at lower costs. In developed countries, network operators are installing fiber optic cables closer to end users, reaching directly into their neighborhoods, offices, and homes. In developing countries, the spread of high-speed wireless networks promises to gain momentum over the next few years. Wireless broadband is already more prevalent than wireline broadband (Table 1.3) in many developed and developing countries, but to a much greater extent in developing countries. As noted in the table below, the number of wireless broadband subscriptions in Sub-Saharan Africa, for example, is more than eight times that of wireline, suggesting the potential for wireless broadband in areas where traditional wireline infrastructure may be absent.

With the number of wireless broadband subscriptions worldwide expected to reach the one billion mark in 2011, developing countries, particularly India and China, are often leading the way. Together, India and China have the top five mobile operators in terms of total number of subscriptions, which is expected to continue as mobile broadband grows.

Table 1.3. Wireless and wireline broadband subscriptions per 100 inhabitants, June 2011

<table>
<thead>
<tr>
<th>Region</th>
<th>Wireless</th>
<th>Wireline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-Saharan Africa</td>
<td>2.9%</td>
<td>0.3%</td>
</tr>
<tr>
<td>East Asia & Pacific</td>
<td>16.6%</td>
<td>10.5%</td>
</tr>
<tr>
<td>Eastern Europe & Central Asia</td>
<td>14.5%</td>
<td>9.2%</td>
</tr>
<tr>
<td>EU & Western Europe</td>
<td>45.9%</td>
<td>27.6%</td>
</tr>
</tbody>
</table>
Another important trend affecting broadband networks is their ever-increasing speed. In 2010, Akamai, a major Internet content manager, suggested a global shift away from narrowband to broadband connectivity. Globally, average Internet connection speeds (for users who pass through the company’s servers) rose 14 percent year-over-year to 1.9 Mbit/s, and all of the top ten countries achieved average connection speeds at or above the “high broadband” threshold of 5 Mbit/s.

Figure 1.4. Average Broadband Speed: Top 10 Countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Broadband Speed (Mbit/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Korea</td>
<td>13.7</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>9.4</td>
</tr>
<tr>
<td>Japan</td>
<td>8.3</td>
</tr>
<tr>
<td>Romania</td>
<td>7.0</td>
</tr>
<tr>
<td>Netherlands</td>
<td>7.0</td>
</tr>
<tr>
<td>Latvia</td>
<td>5.9</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>5.7</td>
</tr>
<tr>
<td>Switzerland</td>
<td>5.6</td>
</tr>
<tr>
<td>Belgium</td>
<td>5.5</td>
</tr>
<tr>
<td>Canada</td>
<td>5.5</td>
</tr>
<tr>
<td>Top 10 Average</td>
<td>7.36</td>
</tr>
<tr>
<td>Global Average</td>
<td>1.94</td>
</tr>
</tbody>
</table>

In addition to overall growth in wireline and wireless broadband infrastructure, the release of new broadband-enabled devices may also be viewed as a supply-side input. The overall trend for broadband devices is improved capabilities, mobility and portability. According to research firm IDC, in the third quarter of 2010, global smartphone shipments increased nearly 90 percent from the same quarter.
IDC’s analysts predicted in November 2010 that 20 percent of device shipments in 2010 would be smartphones, as compared to 15 percent in 2009. The research firm also examined the nascent tablet computing market, noting that shipments in the third quarter of 2010 were 45 percent higher than the second quarter, and forecasting that 2011 shipments would exceed 2010 by more than 160 percent and that 2012 shipments would exceed 2011 by a further 60 percent. In a separate forecast, IDC predicted that combined shipments of smartphones, tablets, and other application-enabled devices would overtake traditional personal computer (PC) shipments by mid-2011 as complementary devices to PCs. All of these devices are designed to take advantage of broadband connectivity, whether provided by a mobile network or by Wi-Fi distribution of the wired broadband connection in a home, workplace, or Wi-Fi “hotspot.”

1.4.2 Trends in Demand

The development of novel or enhanced applications and services enabled by broadband connectivity (see Box 1.4) has served as a key driver of demand for broadband access over the past several years. The availability of broadband networks has facilitated at least a partial migration of existing services from more traditional models to broadband digital networks, including entertainment, banking, education, healthcare, and shopping, to name a few. While many of these same services saw an initial online presence with dial-up and other narrowband services, the rise of broadband connectivity has facilitated the development of more robust applications and services. From the perspective of the organizations that are leveraging broadband-enabled services to better reach consumers, clients, members, and citizens, the efficiency of electronic communications has led to an increasing interest in bringing traditionally offline or non-electronic services to the Internet, or at least augmenting those services with online alternatives.

Box 1.4. User Trends that Promote Demand

<table>
<thead>
<tr>
<th>As the following broadband-enabled services, applications and content become an increasingly integral component of daily personal, business and educational interactions, they are expected to spark further demand for broadband services.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video: More and higher-quality video and other rich content will continue to drive the demand for higher-capacity broadband services.</td>
</tr>
<tr>
<td>Apps and cloud-based computing: Apps are increasingly driving broadband use and development, especially in the wireless broadband context. More robust apps, including productivity applications, such as the office suites offered by companies including Google and Microsoft. Some of the benefits of online applications include access to information and documents from multiple locations, decreased processing power requirements for end-user devices, and decreased responsibility for users to update and maintain applications.</td>
</tr>
<tr>
<td>Web 2.0: Web 2.0 applications leverage advances in computing and connectivity to create collaborative, user-centered, and interoperable environments in which users can generate, distribute, and share content in real time. (See Chapter 6 for more on the Web 2.0).</td>
</tr>
<tr>
<td>Social networking: As these applications have become more sophisticated and diverse, they have also become immensely popular. Each month, Facebook’s more than 500 million active users share over 30 billion pieces of content (e.g., photos, videos, updates, web links, news stories, blog posts). YouTube has become the most popular online video sharing site in the world and 70 percent of its content is created outside the United States. Broadband access facilitates use of these social networking applications, which in turn are major drivers of</td>
</tr>
</tbody>
</table>
In addition to the social and personal use of broadband led by the private sector, countries around the world are providing increasing access to online e-government services. For business owners, broadband allows them to reap substantial benefits. The use of broadband as an input by businesses, both traditional “brick and mortar” and online companies, is expected to be one of the main drivers of broadband adoption and will require network operators to quickly deploy new infrastructure and upgrade existing networks in order to keep pace with demand.

1.5 How Can Broadband Development Be Supported?

Despite the rapid growth in demand for broadband and the development of broadband-enabled applications, services, and devices, there are also notable challenges. Whether within a particular economy or when comparing nations or even regions, it can be generally stated that the more affluent and better-educated populations have had earlier and better access to ICTs than the less-affluent and less-educated populations. With the rise of broadband-enabled services and applications, and the increasing migration of many aspects of modern life online, a lack of broadband connectivity can increasingly have a negative impact on social and economic development by excluding those who lack broadband access or do not see the relevance of broadband-enabled services.

Governments can employ a wide range of strategies and policies to support the development of broadband, such as through market liberalization (e.g., opening international gateways to competition) and the allocation and award of new spectrum for wireless broadband (e.g., releasing the “digital dividend” spectrum for commercial wireless use once the country’s digital television transition is completed). It may be useful for policymakers and stakeholders to view broadband as an ecosystem to encourage the development of coherent, integrated policies that maximize the benefits of broadband across all sectors of the economy and aspects of society.

1.5.1 Viewing Broadband as an Ecosystem

To help government policymakers and private sector investors better understand the various ways in which broadband networks and services can best be supported, it is useful to have an overarching concept of how to think about broadband from a policy point of view. This section proposes that broadband can be best thought of as an ecosystem of mutually dependent—and reinforcing—components: supply and demand.

Under the ecosystem model (see Figure 1.5), the supply of broadband network platforms is the first necessary condition (i.e., broadband infrastructure must be available). However, demand for broadband is just as important in order to make substantial network investments worthwhile. Additionally, the ability for non-ICT sectors to use and create broadband-enabled services and applications boosts demand and encourages further network deployments. Developing these synergies will largely determine the extent to which broadband impacts the economy and serves as an enabling platform, and ultimately, as a GPT that can act as an essential input in driving innovation and growth in all sectors.
The basic elements of supply in the broadband ecosystem consist of four levels: 1) international connectivity; 2) domestic backbones; 3) metropolitan connectivity and 4) local connectivity.67 These elements and their importance as the supply-side component of the broadband ecosystem are detailed in subsequent chapters. Chapter 5 discusses each of these components in more detail, while Chapter 1 and Chapter 3 discuss the policy implications and legal/regulatory trends, respectively, related to broadband networks.

Without relevant, useful, and innovative advancements in services, applications, and content, there would be little or no demand for broadband. As such, the many demand-side components—including services, applications and content—are essential to promoting a vibrant broadband ecosystem. While generally a distinction is made between services and applications, as technology evolves there is likely to be overlap between services and applications. For example, mobile banking may be treated as a service or an application (and maybe even as both), depending on how and what features are offered. In addition, electronic government (e-government) covers an entire range of services and applications that transform government processes and modes of interacting with businesses and citizens.88 The distinction, at least in terms of the ecosystem, may be irrelevant—what is important is that these services/applications drive demand.

1.5.2 Absorptive Capacity

Addressing supply and demand are necessary conditions for the promotion of broadband network and services, but by themselves they are not sufficient to guarantee that broadband can reach its full potential in the economy. For that to happen, broadband users (e.g., citizens, businesses and government) must also have the capacity to understand, learn and apply the lessons learned about broadband’s benefits and capabilities across the economy and society.
Chapter 1. Building Broadband

Absorptive capacity generally refers to the ability of an organization to recognize the value of new, external information, to assimilate that information and then apply it to the organization’s benefit. This ability is critical to an organization’s innovative capabilities, as new technologies are assimilated by organizations to create, improve and transform business processes, products and services. As users have the ability to become co-creators of content and as broadband user-led innovation is enabled, this same concept can be extended to include other users of the broadband platform, including citizens. Thus, to fully realize the benefits of broadband, the various sectors of the economy and society must have the capacity to acquire, assimilate, transform and exploit the capabilities enabled by this platform. Under the ecosystem model, absorptive capacity is the mechanism by which the benefits obtained from broadband feed into the greater economy, allowing this technology to unleash its potential as a GPT.

Policymakers can facilitate the capacity to understand and incorporate the many benefits of broadband through the development and implementation of policies that are complementary to broadband build-out. In addition, the private sector should be encouraged to adopt broadband as an input to drive productivity, growth, innovation, and welfare throughout the economy and society.

As discussed above, broadband alone has limited impact as a technological platform, but instead acts as an enabler. As such, broadband holds the potential to significantly impact economic and social progress and transform the economy.

However, for this potential impact to be unleashed, broadband must be used by businesses, government, and citizens in a way that increases productivity in the economy. This requires: (i) the creation and availability of broadband-enabled services and applications that increase efficiency and productivity; and (ii) that businesses, government and citizens have the capacity to use broadband-enabled services and applications in a productive and efficient way. These two requirements are critical for achieving the potential economic impact that broadband can produce.

The economy’s capacity to absorb broadband depends on how the two requirements described above are fulfilled in the economy. In a nutshell, a country’s absorptive capacity can be thought as determined by:

1. The capacity of business to create broadband-enabled services and applications and use these applications and services to transform their business processes to be more productive and efficient;

2. The capacity of citizens to create and use broadband-enabled services and applications to increase their welfare; and

3. The capacity of the government and other institutions (e.g., schools) to introduce and accommodate broadband-enabled services to deliver public services more efficiently and transparently to the public.

Components of Broadband Absorptive Capacity

Four components determine the degree to which a country’s economy is able to absorb broadband and translate it into economic and social development. These components are: (i) the economy’s macroeconomic environment; (ii) the business environment; (iii) the quality of human capital; and (iv) the governance structure (Figure 1.6). The macroeconomic environment determines the “broadband-friendliness” of the economy and whether the economy and its main actors (i.e., businesses, government and citizens) are open to using ICTs. The business environment, which includes access to financing and diffusion of previous technologies, determines the ability of businesses and entrepreneurs to create new broadband-enabled innovations, modify business processes based on these innovations and update existing products, services and strategies using broadband and the broadband-enabled
environment. The quality of human capital depends on the ability of the labor force, businesses and academic institutions to understand the potential of broadband and adapt their mindsets to the broadband-enabled environment. Finally, the governance structure determines the degree to which businesses and citizens are permitted to share and access information openly, as well as to share broadband-based ideas and innovations. Additionally, governance addresses the security of investment and the cost of creating new broadband-enabled business, services and products. Governance that promotes the absorptive capacity of broadband generally requires free, open access to information and abidance of the rule of law to protect investments. Although there are a wide range of elements for each of the components of absorptive capacity, Figure 1.6 provides several examples.

Figure 1.6. Illustrative examples of elements of absorptive capacity

<table>
<thead>
<tr>
<th>Macroeconomic Environment</th>
<th>Business Environment</th>
<th>Quality of Human Capital</th>
<th>Governance</th>
</tr>
</thead>
<tbody>
<tr>
<td>• General government balance</td>
<td>• Ease of starting new businesses</td>
<td>• Secondary and tertiary education attainment</td>
<td>• Rule of law and regulatory quality</td>
</tr>
<tr>
<td>• CPI inflation rate</td>
<td>• Ease of access to financing and capital</td>
<td>• ICT related education/e-literacy</td>
<td>• Political stability and accountability</td>
</tr>
<tr>
<td>• Real exchange rate volatility</td>
<td>• Access to complementary technologies (e.g., electricity)</td>
<td></td>
<td>• No corruption</td>
</tr>
</tbody>
</table>

Degree of Broadband Absorptive Capacity

The degree of absorptive capacity in a given economy will determine the amount of broadband-enabled economic development. Without strong absorptive capacity, the impact of broadband on economic development will be limited or even non-existent (see Box below). A country can have nationwide broadband coverage and widespread adoption, but will obtain very little overall economic and social benefit if absorptive capacity is limited. Conversely, in a country with relatively limited broadband coverage or adoption, broadband can have a targeted impact on the economy if there is sufficient absorptive capacity. Moreover, absorptive capacity can be targeted to specific sectors of the economy, which has been the case with the IT and business process outsourcing (BPO) industry in countries like India. This targeted absorptive capacity can then expand throughout the economy.

Box 1.5. The impact of broadband-enabled ICTs on the economy depends on its technological absorptive capacity

An economy with a flexible facilitating structure that has an entrepreneurial business environment; few technological regulatory restrictions; an ICT-educated workforce; high penetration of previous complementary technologies (e.g., electricity); a business-friendly financing structure; and a responsive
public policy structure will experience faster diffusion of broadband-enabled applications and services and larger economic and social impact. The impact of broadband-enabled ICTs on economic growth will be slower and smaller in an economy that lacks some of these elements or that delays the needed changes to adapt the facilitating structure to broadband-enabled ICTs (e.g., by not modifying the regulatory framework to eliminate technological restrictions or to facilitate their diffusion).

In relative terms it can be put as follows: assuming that the maximum and fastest effect on the structure of the economy that a country can obtain from broadband-enabled ICTs is 100 (i.e., potential positive impact from broadband), the degree of absorptive capacity of the economy will determine how much and how fast that 100 value can be actually realized.

Sweden and Italy provide a good illustrative example of how this mechanism works. Both countries have relatively similar levels of GDP per capita and an in-depth penetration of previous complementary technologies, such as electricity and telephone lines. However, the absorptive capacity in both countries was different. Sweden performed better in business environment and human capital. In addition, Sweden took a very active role in modifying the facilitating structure of its economy to allow for faster diffusion of broadband (e.g., by establishing a public policy to enable the diffusion of broadband and implementing e-literacy programs).

Table 1.4. Sweden and Italy: Internet adoption proxies

<table>
<thead>
<tr>
<th></th>
<th>Sweden</th>
<th>Italy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of population with no Internet skills (2007)</td>
<td>22 percent</td>
<td>58 percent</td>
</tr>
<tr>
<td>Percent of enterprises receiving Internet orders (2007)</td>
<td>26 percent</td>
<td>4 percent</td>
</tr>
<tr>
<td>Percent of enterprises purchasing on Internet (2007)</td>
<td>72 percent</td>
<td>29 percent</td>
</tr>
</tbody>
</table>

There are many other factors in place that explain the better performance of Sweden’s economy in the diffusion of broadband-enabled ICTs, but what it is important to highlight is that Sweden actively adapted the facilitating structure of its economy to allow broadband to diffuse faster and broader than Italy did. As a result, the economic effects of broadband-enabled ICTs in Sweden have been larger and surfaced faster. For instance, from 1998 to 2007, average annual productivity growth has been much faster in Sweden than in other peer countries (2.32 percent vis-à-vis 0.39 percent in Italy and an average of 1.66 percent among OECD countries). Even though the source of this growth is not exclusively due to broadband, Sweden’s policy has transformed the country into a broadband leader, which has played an important role in its economic growth.

1.5.3 Moving Forward

Throughout the rest of this Handbook, the concept of broadband as an ecosystem, consisting of supply and demand components, is used as the overarching organizing concept to frame how policymakers can maximize absorptive capacity and fully realize the potential impact of broadband on economic, social and policy goals. To this end, as discussed in Chapter 1, governments should implement policies that support the supply of broadband networks and services, particularly to economically unviable areas through a variety of mechanisms such as appropriate market regulation; universal access and service policies; flexible licensing policies; direct infrastructure investments; removal of bottlenecks; and pro-market tax policies. Additionally, governments should seek to stimulate demand and uptake of broadband through the creation of an enabling environment by addressing awareness, affordability, and
attractiveness (perceived value) of broadband services (see Chapter 6 for more on facilitating demand). In developing these policies, there is a need for high-level coordination among the ICT ministry and other sector ministries, as well as a focus on R&D investments. In addition, the roll-out of broadband presents particular concerns for developing countries as is addressed specifically in Chapter 7.

It is also essential to ensure that the government possesses the capacity to create and implement effective laws and regulations that give rise to an enabling environment. Chapter 3 discusses this in more detail. This is particularly important in developing countries where the government must be able to carry out the policies and rules it develops. These policies should emphasize the need for appropriate tools that foster supply and demand and build absorptive capacity.
Chapter 2. Policy Approaches to Promoting Broadband Development

2.1 Introduction

The development of broadband networks and services over the last decade or so has been largely focused in developed countries. In that time, private sector investment, coupled with enabling polices put in place through liberalization and regulatory reform, has driven the building of broadband networks and the adoption of broadband services throughout the developed world. But as more economic and social activity has moved onto broadband networks in recent years, developing countries are implementing their own broadband plans and initiatives to realize the benefits that broadband can bring to a country and its citizens.

The development of strategies and policies to promote broadband, however, is not an easy task. Policymakers are quickly realizing that promoting broadband may be harder to achieve compared to other types of services, such as mobile and wireline telephony. The usefulness of a mobile or wireline telephone is typically obvious to consumers regardless of income or education level and, coupled with relatively low prices, such intuitive services have grown rapidly. But the same cannot necessarily be said of broadband—especially if the opportunity to try it is undermined by high prices. Using broadband services requires access to a computer or smartphone, and some way to pay for using the network—either through a subscription (and often some form of term contract), a pay-as-you-go approach or through prepaid services. In the absence of access through the workplace, school or community centers, this can make ownership relatively costly (even with falling prices for hardware and subscriptions) for individual users. In addition, understanding the benefits of broadband, and having the skills to make use of the available services, requires some level of digital literacy, as well as basic literacy (i.e., the ability to read and write).

As they consider how best to promote broadband, policymakers and analysts have come to realize that broadband must be viewed as an ecosystem with supply and demand considerations. On the supply side, the building of networks to carry broadband services is the top priority. But simply having a network available does not guarantee that broadband services will automatically be used. It will also be necessary for government policy and private sector investment to focus on driving demand for broadband services—whether by putting more services online or educating users on the benefits of broadband and the skills needed to effectively use the new services. Those countries with the best success in broadband development have focused on developing holistic policies to support both sides of the broadband supply and demand equation.

This chapter will identify the issues policymakers must address as they seek to create an enabling environment for broadband and examine what policies and regulatory approaches may be effective in encouraging broadband development. It is designed to provide an overall summary introduction to the issues, policies and strategies that are discussed in more detail in subsequent chapters. Those chapters analyze the issues extensively, and provide many examples of how different countries have approached broadband development. They deal respectively with the technologies that make broadband possible, how broadband networks and services can be universalized, how demand for broadband can be stimulated and what changes to laws and regulations can help broadband reach its greatest potential.

2.2 The Public Sector’s Evolving Role in Broadband

The public sector has played two roles in promoting the growth of information and communication technologies (ICT): 1) making markets more competitive, efficient and accountable/transparent and 2)
Chapter 2. Policy Approaches to Promoting Broadband Development

ensuring equitable access for all. This has enabled the private sector to lead the roll-out and investment in ICT. This same approach should be pursued with broadband development. The role of government should be to enable, facilitate and complement market development, rather than to substitute government decisions for market forces and public sector investment for private investment.

Due to broadband’s importance, however, there have been calls to view broadband as a public good in order to ensure affordable universal access and spread the benefits across the full range of economic sectors.93 Based at least partially on a public goods analysis, some countries have taken more direct action to promote broadband development, establishing initiatives and strategies where the government intervenes more directly to promote, oversee and universalize their broadband markets. This was particularly the case as a result of the economic crisis of 2008, as many governments came to see broadband networks and services as a way to preserve and enhance their economies. In 2009, for example, countries with different economic philosophies included broadband in their economic stimulus plans (e.g., Australia), which indicated that they are no longer averse to making strategic investments. By 2011, however, such policies were being increasingly called into question as government debt levels rose, in some cases dramatically, forcing austerity programs and corresponding cuts in government spending on a wide range of priorities, including broadband.

2.2.1 Defining the Challenges: Barriers to Broadband Growth

As policymakers and regulators consider approaches to stimulate and promote broadband development, it is important to recognize the full scope of the challenges that must be addressed. These challenges tend to be multi-layered and involve stimulating the supply of broadband infrastructure and encouraging demand for broadband applications and services, as discussed in section 1.4.2 and Chapter 6. On the supply side, the problem is not as simple as just building more networks; as operators roll-out their broadband business plans, issues of cost, service quality (bandwidth/data speeds), and technology choice will also play important roles in deciding how best to bring access to a nation’s citizens. Even then, just building more networks or providing access to all is not a guarantee of success—governments may need to support broadband development by encouraging demand for broadband in those limited instances where the private sector does not generate useful and relevant applications, services and content. In sum, governments must think of broadband as an ecosystem, holistically, with supply and demand components, to maximize their chances for broadband development success.

Supply: reaching unserved and underserved users

In considering policies and strategies to promote broadband development, one important goal is to ensure that access is available to the widest possible user base. This means that networks need to be built out to reach as many people as possible. But facilitating broadband supply presents at least two significant issues. First, there are areas in virtually every country that have no meaningful access to broadband services at all. This problem is most pronounced in developing countries, which have seen less investment in the construction of networks outside metropolitan areas. This situation has improved in recent years with the spread of wireless networks, but there are still areas without network coverage. Second, some areas have networks in place, but these networks are not capable of supporting broadband speeds and services. These areas will need to be upgraded to provide broadband, either through the construction of high-speed wireline networks and/or through advanced wireless networks (3G or 4G services). In many developing countries, where wireless penetration can far exceed wireline penetration, upgraded wireless networks capable of providing true broadband speeds are expected to be the main supplier of broadband services.
Demand: Barriers to adoption

Improving the availability of broadband networks only addresses one impediment linked to broadband development. Even with networks in place and accessible, there are likely to be barriers due to lack of demand. This problem involves people who have access to broadband network(s), but are unable or unwilling to obtain service. Addressing lack of demand is important because low adoption rates will leave networks underutilized. This has at least two implications. First, from a network externalities standpoint, fewer users reduce the economic and social utility of the networks. Where relatively few people can communicate online, the network externalities will be reduced since there is a smaller number of potential customers for businesses to serve. This further means that there may be fewer local businesses and consumers to offer broadband-enabled services and applications, such as video streaming services (e.g., Hulu+), voice and video communications (e.g., Skype) and download services for a variety of applications like software, e-books, etc.

Second, low adoption and use will undermine the business case of any network—even those built with public funds. Fewer users means that networks are correspondingly higher-cost, or their costs are spread over a smaller user base, making them relatively more expensive to build and maintain/operate. Thus, it is important from the overall goal of improving broadband development for governments to focus their attention on developing policies that not only facilitate and encourage the building of broadband networks, but ensure that as many people as possible can and do use them. Barriers to adoption vary and will likely not be the same in all countries, but some broad categories are identifiable.

In studies conducted to identify barriers to Internet and broadband adoption, the primary reasons respondents cite for not subscribing to broadband services can be grouped into four main categories: 1) broadband is not relevant; 2) equipment or service is too expensive; 3) lack of training or comfort with using broadband Internet services; and 4) supply issues in which broadband is not available. This is not to say that demand inhibitors are exactly the same in all countries. The factors seen as impediments to adoption in some countries may be less of a factor in other countries, due to different social and cultural histories and experiences, as well as different socio-economic conditions. Figure 2.1, which reflects survey data collected from non-adopters of Internet services in Brazil and the United States, shows how some factors are more important than others. Respondents in the United States, for example, see digital literacy as a much bigger problem than respondents from Brazil who consider high cost to be a larger issue. Therefore, each country must analyze and address the demand-reducing factors on a case-by-case basis and tailor solutions to the individual problems.

Figure 2.1. Reasons for Non-Adoption of Internet in Brazil and Broadband in the United States

Sources: NIC Brasil, Análise dos Resultados da TIC Domicílios and FCC, Broadband Adoption and Use in America.
2.2.2 Development of Country-Specific Solutions

There is no “one-size-fits-all” approach that will guarantee greater broadband deployment and adoption in every country. Political and economic conditions vary, and each country is endowed with different technological resources. Some countries have a relatively well-developed wireline telephone network that could support broadband deployment, while others have widely deployed cable TV networks that might be able to provide a measure of facilities-based competition from the start. In yet other countries, there may be various regulatory, political, economic or other barriers to entry that prevent potential competitors from offering broadband services or building broadband networks.

This variance makes it unwise to propose a uniform solution to promote broadband development. In some cases, the challenge will be to create incentives so that widespread networks can be used to offer broadband services. In other countries, the main challenge may be to find ways to educate potential users about the benefits of broadband and train them to use broadband applications and services. As a result, each country will face its own unique circumstances that will drive policy and investment decisions. However, the key objective for governments is to pursue policies that will create an enabling environment that will foster broadband development.

Important lessons can be learned from those countries that have pursued broadband development policies (see Box 2.1). First, the focus in these countries has been on improving the incentives and climate for private investment—a policy that even highly resource-constrained countries might be able to follow (and many have successfully attained with mobile telephony). Many of the policies and programs that have been developed support private sector investments and call for specific, limited and well-justified public funding interventions only in exceptional circumstances. In particular, where governments are trying to promote growth of underdeveloped markets, policies and regulations that may reduce private sector investment should be avoided.

Government funding or policy should not have the effect of “crowding out” private sector investment. For example, governments can encourage private investments in many cases without direct subsidies, such as by developing passive infrastructure—ducting, towers, cable conduits, and opening rights of way—which can significantly cut costs and create minimal market distortions. Public investments should be considered only when no or insufficient private investments are expected for a significant period. Furthermore, to maintain a level playing field for competition even with public investments, governments should seek to avoid favoring one company (or type of company, e.g., telephony vs. cable) over another. For example, if and when governments intervene to increase network availability, it may be necessary to ensure that subsidized networks are open access—meaning that network operators offer capacity or access to all market participants in a nondiscriminatory way. Nonetheless, it is recognized that there may be cases where a dominant provider may need to be appropriately regulated to avoid market concentration or other adverse impacts on overall market competition.

Box 2.1. Public Sector’s Role in Fostering Broadband Development—Key Lessons

- Government should focus on maximizing competition, including removal of entry barriers and improving the incentives and climate for private investment.
- Government should provide for specific, limited, and well-justified public funding interventions only in exceptional circumstances (e.g., where governments are trying to promote growth of underdeveloped markets).
- Government funding or policy should not compete with or displace private sector investment.
- Government should maintain a level playing field for competition even with public investments.
Chapter 2. Policy Approaches to Promoting Broadband Development

by avoiding favoring one company (or type of company, e.g., telephony vs. cable) over another.

- Subsidized networks should be open access (i.e., offering capacity or access to all market participants in a nondiscriminatory way).
- Government may need to regulate dominant providers to avoid market concentration or other adverse impacts on overall market competition.
- Government should eliminate barriers to content creation and refrain from blocking access to content, including social networking sites, or restricting local content creation.

Source: Telecommunications Management Group, Inc.

Developing countries in particular will also need to identify ways to leverage limited resources to maximize impact, prioritizing programs based on demand and market evolution, rather than shying away from policy reform altogether. For most developing countries, the most effective approach to promoting broadband development is likely to involve a mix of approaches and policies that rely on private sector investment, coupled with regulatory reform that will promote efficient and competitive markets (which will also increase private sector investment). Direct government intervention should be limited to those cases where markets may not function efficiently (e.g., providing service to high-cost areas) or where larger social goals are clearly identified (e.g., digital literacy training). The basic principle remains the same: governments should only intervene based on sound economic principles, where the benefits of intervention outweigh the costs. For example, particularly at the initial stage of broadband market development, there may be a need for aggressive government policies to generate demand, expand networks, and reach underserved areas and communities.

2.3 How to Do It: Implementing Policies and Strategies to Enhance Broadband Development

Governments have a number of ways to promote the development of broadband networks and services in their countries. In most cases, the most effective government strategies are those that seek to harness the power of private sector investment to spur broadband growth. For purposes of this Handbook, there are three broad categories of government action in this regard that will be examined: (i) legal and regulatory policies and reform; (ii) universal access policies; (iii) support for private sector broadband network build-out; and (iv) policies that seek to grow demand and spur adoption. These areas are discussed in more detail in Chapter 3, Chapter 4, Chapter 5 and Chapter 6, respectively.

2.3.1 General Approaches to Promoting Broadband

As policymakers seek ways to promote the development of broadband in their countries, certain general lessons can be learned from those countries with more developed broadband networks and services. This section briefly describes the general elements that governments should be aware of as policies and strategies are created.
Establish Specific Plans and Policies

Based on an evaluation of the supply and demand challenges that exist in a country (see section 2.2.1), the next step is developing the specific policies and strategies to address those challenges. This will entail setting concrete, measurable objectives for improving the supply of broadband through infrastructure build-out as well as promoting demand for broadband services and applications. Setting specific plans or policies will provide a clear sense of direction that will encourage investment, as well as provide a blueprint for long-term action.

A good plan should aim to promote efficiency and equity, facilitate demand and help to support the social and economic goals of the country. The most successful plans will start with a clear vision of what broadband development should be and contain well-articulated goals that can be used to develop specific strategies to achieve success. Such frameworks can launch or revise ambitious national broadband visions, including definitions of broadband, service goals (including national and rural coverage), transmission capacity, service quality, and demand-side issues such as education and skills development. The government of the Republic of Korea, for example, was one of the early broadband leaders. It has developed six plans since the mid-1980s that have helped shape broadband policy in the country. As the Korea example shows, policy approaches can effectively move beyond network rollout and include research, manufacturing promotion, user awareness and digital literacy. It also highlights the possibilities for sector growth to be based on long-term interventions focused predominantly on opportunity generation rather than direct public investment.

For many countries, the development of an extensive national broadband plan or strategy is an important step towards elaborating more specific broadband development policies. The countries highlighted in Table 2.1 have national broadband strategies containing specific broadband development goals.

Table 2.1. Publicly Stated Policy Goals for Broadband Service Delivery and Adoption

<table>
<thead>
<tr>
<th>Country</th>
<th>Goal for Broadband Service Delivery, Access and Adoption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>50 broadband accesses per 100 households</td>
</tr>
<tr>
<td>Finland</td>
<td>Legal right of all citizens to one Megabit per second (Mbit/s) access at affordable levels by 2010. By year end 2015, 99 percent of all permanent residences should have access, within two kilometers (km), to an optical fiber or cable network delivering 100 Mbit/s service.</td>
</tr>
<tr>
<td>France</td>
<td>By 2012, ubiquitous access to 512 kilobits per second (kbit/s) service at monthly rates at or below EUR 35.</td>
</tr>
<tr>
<td>Germany</td>
<td>75 percent of households should have high speed broadband access with transmission rates of at least 50 Mbit/sec by 2014</td>
</tr>
<tr>
<td>Malaysia</td>
<td>By end of 2010, it is expected that the total broadband connection will reach 75 percent penetration rate for household</td>
</tr>
<tr>
<td>Morocco</td>
<td>One out of three households connected by 2013</td>
</tr>
<tr>
<td>South Africa</td>
<td>Household broadband penetration should be at least 15 percent by 2019</td>
</tr>
<tr>
<td>Sweden</td>
<td>By 2010, near ubiquitous access to two Mbit/s service; 40 percent of households having access to 100 Mbit/s connections by 2015, and 90 percent by 2020.</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>By 2012, two Mbit/s service to all households.</td>
</tr>
</tbody>
</table>
Chapter 2. Policy Approaches to Promoting Broadband Development

By 2020, 100 million households with access to actual (not advertised) speeds of 100 Mbit/s, and universal connections with actual speeds of at least four Mbit/s down and one Mbit/s up.

Source: Rob Frieden for the World Bank and Telecommunications Management Group, Inc.

As Table 2.1 shows, however, countries differ in their approach to setting targets and goals. Some focus on improving access, while others seek to set specific targets for data transfer speeds.

But policies and programs to spur broadband development have not been confined to developed countries. Other countries have also sought to develop national broadband strategies as shown in Box 2.2.

Box 2.2. Broadband Strategies in Middle-Income Countries

Chile was the first Latin American country to announce a national broadband strategy. The strategy identifies ICT as a priority for economic development. Chile has also planned and implemented ICT policies from both the supply and demand sides. On the supply side, the government has authorized four Worldwide Interoperability for Microwave Access (WiMAX) operators as regional providers, and the regulator plans to award additional spectrum for a third generation (3G) operator to introduce a new operator. The demand-side strategy has included programs for e-literacy, e-government, and ICT diffusion. For example, almost all taxes are filed electronically, and government e-procurement more than doubled the volume of transactions processed between 2005 and 2008. The government has also promoted broadband use by municipalities. By 2008, almost all municipalities had Internet access, and 80 percent had websites. In May 2010, Chile’s wireline broadband penetration was 10.66 percent, while mobile broadband penetration was less than half that, but growing at a much faster rate.

Turkey’s government recognizes the importance of a vibrant telecommunications market and is keen to promote the spread of broadband. For instance, many educational institutions have been given broadband access. The Information Society Strategy for 2006–2010 aims to develop regulation for effective competition and to expand broadband access. Targets include extending broadband coverage to 95 percent of the population by 2010 and reducing tariffs to 2 percent of per capita income. The regulator has also looked at issuing licenses for the operation of broadband fixed wireless access (BFWA) networks in the 2.4 GHz and 3.5 GHz bands. In June 2010, Turkey had penetration rates of nine percent for wireline broadband and 4 percent for mobile broadband.

Malaysia developed its Information, Communications, and Multimedia Services (MyICMS) 886 strategy in 2006, setting a number of goals for broadband services. One was to increase broadband penetration to 25 percent of households by the end of 2006 and 75 percent by the end of 2010. Although these targets were not met, the results have been impressive—the household broadband penetration rate in the country topped 53 percent in October 2010. Now the government is focusing on WiMAX, 3G, and fiber to the home (FTTH) platforms to boost broadband adoption. To that end, the government is funding a fiber optic network that will connect about 2.2 million urban households by 2012. The network will be rolled out by Telekom Malaysia under a public-private partnership where the government will invest MYR 2.4 billion (USD 700 million) in the project over 10 years, with Telekom Malaysia covering the remaining costs. The partnership is expected to cost a total of MYR 11.3 billion (USD 3.28 billion).

Allow ample opportunity for stakeholder input on plans and policies

The development of broadband plans should involve the participation of all relevant stakeholders, both public and private. As such, governments should provide for a public consultation process that allows ample opportunities to obtain input from the private sector, consumers, and other relevant stakeholders. Given the complexity, varied issues and broad impact of broadband, these transparent discussions are an important part of bringing stakeholders to the table in an open, objective and neutral manner so as to maximize cooperation between the public and private sectors. Such services make it much easier for all parties, but particularly ordinary citizens, to learn about and comment on the issues being considered. A variety of mechanisms can be used to foster stakeholder input—presentation of filings by stakeholders, workshops, hearings, and inputs made through an online comment mechanism on regulatory website or blog. Moreover, as e-government services have expanded, the effectiveness of public consultations has grown as well. The broadband development process will benefit from the broader range of perspectives that can now be presented to regulators and policymakers. Consultations and discussions are also proven mechanisms for regulators and ministries to understand the varying challenges and potential opportunities that are part of the reform process, for increasing capacity and knowledge, and for exchanging ideas in an open, transparent setting.

Recognize and take into account that implementation of plan will take time and persistence

In many cases, the success of programs that have increased broadband adoption has simply been the result of longevity. Some countries prioritized broadband in the 1990s or early 2000s and have thus been working on promoting broadband for quite a number of years, thereby providing them with a meaningful head start over other countries. For example, in 2000 Sweden enacted its IT Bill, which established the pillars of its ICT strategy as “competencies, confidence, and access.” Sustained, focused efforts with continual updates over a number of years contribute to the long-term success of any broadband strategy. Conversely, seeking a “one-shot” solution that can simply be achieved with minimal time and resources is not likely to produce the best long-term outcome.

Develop research mechanisms to track progress of plan

As broadband technologies and applications evolve over time, the various segments of the broadband market will change as well. Further, notions of digital literacy and underserved populations will also be in flux. A number of agencies and organizations are already tracking various parts of the broadband equation. To keep up with this dynamic and ever-changing sector, governments may wish to create an ongoing, multi-year, broadband-specific research program that tracks population use, ongoing barriers and levels of digital literacy. This program could serve a complementary function to the ministry or regulator’s efforts to encourage the supply-side parameters of broadband (e.g., network build-out, speeds and capabilities). The program could be housed within the agency responsible for broadband development or could be run out of one of the existing government agencies that perform such research. The ongoing issues of measurement and assessment, including international benchmarking, are discussed in more detail in section 2.5.

Pilot projects can play an important role in ongoing research and development (R&D) efforts related to broadband deployment. Such projects can help demonstrate the viability of a new technology or
service, but more importantly may help to identify those policies and strategies that do not work very well. This may be a cost-effective approach to broadband development as it allows concepts, plans and methods to be tested on a small scale before committing larger amounts of resources. In the United Kingdom, for example, Broadband Delivery UK (BDUK), a unit of the government, gives out grants (supplemented with private funds) for pilot projects to build/upgrade broadband networks in rural areas. Once the upgrades are completed, Internet Service Providers (ISPs) will gain access to the infrastructure, which may use any technology, on a wholesale basis.

Box 2.3. General Elements for Governments to Consider When Creating Policies and Strategies

- Establish specific plans and policies that define broadband development and contain concrete, measurable objectives that can be used to develop specific strategies to achieve success.
- Ensure that plans address mechanisms for improving the supply of broadband through infrastructure build-out as well as promoting demand for broadband services and applications.
- Allow ample opportunity for stakeholder input in developing plan.
- Be realistic when establishing objectives—recognize and take into account that implementation of a plan will take time and persistence.
- Focus on long-term success by developing sustained, focused efforts (with continual updates) over a number of years.
- Avoid seeking a “one-shot” solution that can simply be achieved with minimal time and resources as this is not likely to produce the best outcome.
- Consider developing an ongoing, multi-year broadband-specific research program that would track population use, ongoing barriers, and levels of digital literacy to track progress of a plan and determine whether objectives are being met or modifications need to be made.
- Develop one coordinating agency as responsible for implementation of the plan.

Source: Telecommunications Management Group, Inc.

2.3.2 Provide a National Focal Point for Broadband and Develop Broadband Capacity

To optimize the benefits of broadband, it is key to have a comprehensive national-level focus on promoting broadband use, a clearinghouse for successful projects, and a consistent evaluation of what works and what does not. An important part of establishing and maintaining that focus over time will be developing capacity-building programs for government officials to provide education on how broadband can provide benefits across many sectors of the economy. Such programs, in turn, can help to shape the development of effective broadband development strategies throughout all levels of government from local training programs to national network regulatory regimes.

Numerous countries have established agencies or special offices specifically to oversee broadband development issues. In Sweden, for example, the IT Policy Strategy Group recommended the creation of an internal strategic coordination function to oversee “holistic” IT policy development and implementation. This internal coordination function was also envisioned to improve coordination between central government, local authorities, county councils and the business sector. The United Kingdom now has a Minister of Digital Inclusion. Brazil has appointed a Digital Inclusion Secretary housed within the Ministry of Communications that will be in charge of the National Broadband Plan, as
Chapter 2. Policy Approaches to Promoting Broadband Development

well as of all digital inclusion projects that are currently being carried out by various branches of the federal government.

Often, broadband development efforts are overseen by the ministry responsible for communications or the regulator. In many cases, this responsibility is exercised in conjunction with a comprehensive broadband development plan. In Singapore, for example, the government developed and is actively pursuing its Intelligent Nation 2015 (iN2015) master plan, which is designed to transform Singapore into “an intelligent nation and a global city, powered by info-communications.” As part of that plan, the Next Generation Nationwide Broadband Network (Next Gen NBN) is being developed to bring fiber to homes and businesses across the whole territory. A wireless broadband network is also part of the strategy. All these efforts are being overseen by the Infocomm Development Authority (IDA), which is providing the government leadership in the development of these networks. In India, the Ministry of Communications and Information Technology established an advisory group with members from telecommunications companies, industry associations and various government departments (including health, education and rural development) to help guide India’s plan for a national fiber network that is envisioned to reach all villages and towns with more than 500 people. India’s approach is particularly noteworthy because it not only recognizes the importance of a central focal point, but also the cross-cutting impact of broadband on various sectors of the economy and the need for a coordinated approach that involves all relevant agencies.

The decision regarding whether to set up such an agency or office will depend on the local situation in each country, and will need to take into account existing laws and institutional responsibilities as well as the ability of the government to provide adequate funding for such an activity. For developing countries with limited financial and human resources, devoting a whole agency or branch of government to broadband development may seem ambitious. Nevertheless, given the importance of broadband development and its potential role as a general purpose technology (GPT) capable of supporting advances in many different sectors of any economy, developing such human resource capacities will be critically important.

The issues surrounding the development of effective broadband policies are extremely complex and cover a wide range of disciplines, including engineering, law and economics, among others. This will require governments to build capacity so that trained, knowledgeable professionals can guide the implementation of a country’s broadband plan from concept through construction and adoption. Without such leadership, even the best laid plans may fail through inattention and neglect.

2.3.3 Develop Policies for Both Sides of the Broadband Coin: Supply and Demand

The experience in high-penetration countries shows that successful broadband diffusion requires that both supply- and demand-side factors be addressed (see Figure 2.). While supply-side policies focus on promoting the build-out of the network infrastructure over which broadband applications and services can be delivered, the main goal of demand-side policies is to enhance the awareness and adoption of broadband services so that more people will make use of them.
The interaction of both supply- and demand-side factors is crucial to achieve the highest penetration and adoption of broadband. However, these factors do not always appear naturally as market failures may hinder their development. For instance, broadband diffusion can be limited if the market is not able to reach the required critical mass that leads to a sustainable growth cycle. More importantly, even if both types of factors (i.e., supply- and demand-side) are present in an economy, they will not reach their full potential if they are not coordinated, which may result in slow supply of broadband infrastructure or in poor demand and uptake once networks are available. For this reason, high broadband penetration countries have comprehensive broadband policies that coordinate both supply- and demand-side actions.

In assessing the strategic options for improving broadband build-out and adoption (supply and demand), it is important to remember that there are many different factors involved, and that no two countries have followed identical routes. Nevertheless, it is possible to recognize certain common elements in national broadband success stories (see Table 2.2). In reality, most countries will use a mix of policies, with supply-side policies generally focusing on how to stimulate private sector investment in networks, especially in the early years, while demand-side policies may be more long-term and focused on how governments can help drive broadband demand and adoption.
Table 2.2. Elements of Broadband Strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Brazil</th>
<th>Colombia</th>
<th>Finland</th>
<th>France</th>
<th>Japan</th>
<th>Oman</th>
<th>Singapore</th>
<th>S. Africa</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Establish open-access wholesale networks</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2. Encourage private sector investment</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3. Include broadband under universal service definition</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4. Encourage demand for broadband services</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5. Promote, improve and expand public private partnerships</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>6. Subsidize local (citywide), regional, or national ventures</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>7. Promote facilities-based resale competition</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>8. Mandate local loop unbundling (LLU)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>9. National Broadband Strategy<sup>104</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Rob Frieden for the World Bank and Telecommunications Management Group, Inc.
2.3.4 Building Infrastructure: Promoting the Supply of Broadband

Most developing countries have not yet seen their broadband markets penetrate more than a few percent of their populations. Hence the government’s role is even more important in promoting and accelerating growth of the broadband market. Promoting the build-out of broadband networks throughout a country will likely require governments to pursue multiple strategies, depending on local circumstances. As each country has its own unique history, regulatory structure/framework, economic conditions, social goals/expectations and political processes, the path a country follows to improve broadband networks and services will necessarily have to reflect its specific advantages and disadvantages.

Nevertheless, some general policy approaches may be applicable across the world. First, it is generally accepted that the private sector should be the primary driver of broadband development in most cases. Particularly when government debt is high and resources are limited, sufficient public money may not be available for broadband infrastructure spending. Consequently, policymakers and regulators must consider how best to attract and encourage private sector involvement and investment in broadband. This, in turn, will require governments to do an honest evaluation of the extent to which their country represents—or can be made into—a profitable market opportunity for private sector investors and operators. Questions to be answered may include: Are companies willing to invest? If not, why not? Will such companies drive the broadband market forward on their own or will they need help? What government strategies, policies and regulations can foster and support private sector initiatives and what policies may hold back investment? This is the approach that many countries have taken; they have attempted to facilitate and, where possible, accelerate, broadband rollout through regulatory measures rather than more direct forms of intervention such as investment.

In the context of a private sector-led approach to broadband development, it is recognized that allowing competition to flourish will usually lead to greater deployment and efficiencies in network build-out. Competition in broadband supply is crucial for reducing prices, improving quality of service, and increasing customer service. It has a positive effect on market growth, as it expands access, increases affordability and augments the value proposition. Conversely, lack of access to infrastructure and high prices can act as strong barriers for broadband diffusion. If there is no broadband infrastructure available, consumers cannot access the service. Even if there is a network available, it will be of little use for consumers if the service is not affordable. The government, therefore, should place a priority on developing enabling policies that will facilitate competition throughout the supply chain to help drive deployment and lower consumer prices.

However, there will be certain instances in which competition and market forces will not be sufficient for broadband to develop. In those cases—due to factors such as geography or low population density, for example—private sector players will be unwilling to invest capital where they perceive that they will get a low (or no) return on their investment. For these areas, it will be necessary for the government to intervene more directly to ensure that un- and underserved areas and populations are able to get access to broadband networks and services.

Use competition to promote market growth

A key lesson from countries surveyed in the World Bank’s Building Broadband report is that competition is critical to successful broadband market promotion. Each country studied used different mechanisms to spur competition and promote broadband market growth. Some focused primarily on facilities-based competition, while others focused more generally on increasing the level of competition
at the service level. The presence of established, competitive telecommunications operators in many countries has also contributed to broadband market development.

In the long-term, liberalization and promotion of competition among facilities is the best way to guarantee lower costs. For example, the initiation of the Southern and East Africa Cable System (SEACOM) network that links Kenya, Madagascar, Mozambique, South Africa, and Tanzania resulted in Kenya Data Networks (KDN), a Kenyan data services provider, announcing that it would reduce its Internet prices by up to 90 percent. However, liberalization may be difficult in some developing countries, particularly those with small populations, that are geographically isolated, or are small island developing states (SIDS) with limited access to multiple sources for connectivity. Specific countries may exhibit features that make developing competitive markets in certain segments of the supply chain particularly difficult.

Develop enabling policies to eliminate bottlenecks in the broadband supply chain

Broadband networks are not simple things; they consist of multiple components, all of which must work together in order for broadband services to be delivered to end users in the most efficient and effective way possible. The technologies that make up the “broadband supply chain” are discussed in detail in section 5.2.1, while the legal and regulatory issues associated with each level of the supply chain are addressed in section 3.5.2.

In order to be most effective, competition must be present throughout the different levels of the broadband supply chain (see Figure 2). If not, bottlenecks arise and the benefits of broadband diffusion are severely reduced. As such, it is important to develop enabling policies to eliminate bottlenecks across the broadband supply chain. For instance, if domestic and local levels are competitive, but access to international connectivity is limited or too expensive because there is only one provider of submarine cable, broadband prices will remain high and diffusion will not achieve its potential. The same can happen if all levels in the supply chain are competitive, but local connectivity is limited to one single operator.

Figure 2.3. Addressing Bottlenecks: Policies on the Supply Side

Source: Adapted from, Strategic Options for Broadband Development for the Arab Republic of Egypt, World Bank Report, p. 56 (2010).
Recognizing this, high-penetration countries tend to address competition issues throughout the supply chain. However, the particular conditions in each country may lead to the creation of different bottlenecks and different policy approaches applicable to their specific broadband market. As a result, not all countries have identified the same bottlenecks in the supply chain, nor have they adopted the same policies to ensure competition in these markets. Governments can increase competition in each of the supply chain levels through various public policy options. Additional information on these issues can be found in Chapter 3 and Chapter 5.

Promote Effective Competition and Encourage Investment

Some issues involved in promoting competition do not apply to one particular part of the broadband supply chain, but rather involve the interaction between different levels, or policies that may be applied in a complementary fashion across levels. Furthermore, the dominant service providers in a country often operate at several levels in the supply chain. Thus, policies may be needed to ensure that they do not use their dominance in one market segment to affect other levels of the supply chain. For example, policies that foster open access to network infrastructure can be implemented at all levels and interconnection agreements will be needed between operators at all levels as well (see section 3.4 for more detailed discussion of these issues).

Access to Infrastructure

Network operators and service providers wishing to enter the downstream market (that is, building access networks and offering services to customers) must either build their own backbone network or access the network of another operator. The terms under which operators can obtain access to the backbone networks of other operators will have a significant impact on the success of their business and will influence whether effective competition in the downstream market develops. At the same time, the demand created by these downstream operators will affect the financial viability of the backbone networks, since they are the entities that generate traffic and revenues on those networks. Thus, by promoting effective competition in the downstream market, governments will help stimulate backbone network development.

The role of the regulator is crucial, since it often defines and enforces the terms of access. The decision about whether to directly regulate the terms of access to infrastructure has a major effect on the investment incentives. In Europe, for example, where the incumbent operator historically dominated both the local loop and the backbone markets, the priority for regulators was to provide access to these operators’ networks for companies entering the markets since this was seen as being crucial to the development of competition. Subsequently, as competition has grown, regulators have developed systems for determining which operators should be regulated and how, systems which are based on a well-established framework of general competition regulation. In developing countries (e.g., most countries in Sub-Saharan Africa), such frameworks often do not exist. Regulators will therefore need to develop alternative sets of guidelines to govern how access to the infrastructure of private operators in competitive markets is regulated. This will involve a tradeoff between supporting the development of competition in the downstream market and maintaining the incentives to invest in upstream infrastructure. In areas of a country where public support is provided for backbone infrastructure, this tradeoff is relatively straightforward since one of the conditions of public support typically includes the provision of wholesale services on regulated terms. In other areas of the country and in other parts of the infrastructure, the tradeoff may be more difficult to determine.
Infrastructure sharing

Many governments have sought to encourage deployment of networks and improve the overall competitive situation by allowing or, in more limited instances, even requiring infrastructure sharing. In most cases, infrastructure sharing has been instituted in areas where it was concluded that competing physical infrastructures were not economically viable (such as in rural or remote areas) or where the construction of competing infrastructures could prove unacceptable for social or political reasons (too much disruption from repeated construction projects). By sharing network infrastructure, builders of networks can significantly reduce costs and make investment in them more commercially viable. This is particularly relevant for fiber networks in rural areas where the revenues generated by such networks are low. In some cases, operators have a commercial incentive to enter into these sharing arrangements. For example, in Nigeria, where there has been extensive fiber-optic cable network rollout, operators have entered into a variety of network-sharing agreements aimed at reducing costs and improving quality of supply. In addition, operators may also be required to install multiple fibers in their cables, even if they only need one. These additional “dark” (unused) fibers may not be used initially, but are held in reserve for future use by an existing operator or new entrant. This may be a very cost-efficient way to manage fiber networks because installation (and the associated civil works costs) only needs to be done once as opposed to multiple rounds of digging to install multiple fibers.

Including broadband in land use planning efforts may also promote build-out and reduce costs. For example, requiring all new housing and building developments to include broadband infrastructure, particularly fiber cables, alongside other utility requirements, including electricity and water can help to lower long-term costs by ensuring that broadband infrastructure is laid at the outset; as such, higher costs associated with retrofitting can be avoided.

With wireless networks, particularly in low-density areas where the economics may not support multiple competing infrastructures, carriers can share cell towers and some backhaul facilities as a way of reducing network build-out costs and bringing competition to such areas more quickly. Such arrangements have slowly been gaining acceptance in both developing and developed countries, particularly as carriers seek to manage costs as they expand their networks or upgrade their services to support higher speed broadband. However, in some cases, it may be necessary to overcome resistance from incumbents or dominant operators since they are likely to accrue relatively little benefit from sharing with competitors.

Access to rights of way

Most of the cost of constructing wireline networks lies in the civil works. By lowering the barriers to and cost of accessing and the rights of way associated with public infrastructure (e.g., roads, railways, pipelines, or electricity transmission lines), governments can significantly increase incentives for private investment in broadband networks at all levels of the supply chain. Such incentives can be achieved in several ways, but primarily by: (i) making rights-of-way readily available to network developers at low cost; (ii) simplifying the legal process and limiting the fees that can be charged by local authorities for granting rights-of-way; (iii) providing direct access to existing infrastructure the government owns through state-owned enterprises (e.g., a railway company partnering with one or more operators to build fiber-optic cable network along the railway lines). Such access can also be valuable to wireless operators as they seek to locate towers to expand services.

Accounting and functional separation

In those countries where bottlenecks persist in the supply chain, and especially where the historic monopoly provider still retains a dominant position in the backbone, middle mile or local access
segments, governments have intervened even more directly. To bring added transparency to the operations of a dominant provider, regulators have sometimes required the provider to separate the accounting for different parts of their business; keeping wholesale and retail accounts separate, for example. This better enables stakeholders to identify unfair discrimination against non-affiliated providers, and can help to ensure that competition takes place on fair and equal terms.

One of the most severe remedies imposed by regulators is functional separation. Functional separation requires the incumbent operator to establish a new business division—separate from its other divisions—to manage the network and provide wholesale services to all retail service providers on a non-discrimination basis. Functional separation is not the same as (and is less severe than) the structural separation or the spin-off and sale of network operations—the incumbent operator maintains ownership of the network division, but it must be independent from the operator’s retail and commercial divisions. In many cases, other regulatory obligations are used as a complement to functional separation, such as LLU and/or bitstream obligations. As (fiber) broadband networks are being deployed, governments have begun to consider whether similar obligations should be placed on those new/upgraded networks. Finally, as a last resort, full structural separation may be warranted if the government does not believe that anti-competitive conduct—either by an incumbent or a new broadband/fiber network operator—can be otherwise controlled. This entails the creation of a totally separate entity; for example, to build and manage the network’s physical infrastructure. The various types of separation policies and examples are discussed in Chapter three.

Table 2.3 presents an overview of some of the policies that can be used to promote the supply of broadband. For a more in-depth view of the various policies and programs for promoting the build-out and uptake of broadband, see Appendix B: Policies and Programs for Promoting Broadband in Developing Countries.

Table 2.3. Checklist of Policies to Promote the Supply of Broadband Networks

| Promote competition and investment | • Implement policies/regulations to create conditions to attract private investment in broadband networks
| | • Implement technology and service neutral rules/policies giving operators greater flexibility
| | • Promote effective competition for international gateways and possible policies for service-based competition for gateway operators to provide access to their facilities on wholesale non-discriminatory basis
| | • Develop policies to facilitate inter-platform competition
| Encourage government coordination | • Coordination among countries can impact all levels of the broadband supply chain by lowering costs through common technical standards and facilitating the development of international, regional and national backbones
| | • Incorporate broadband planning into land use/city planning efforts
| Allocate and assign spectrum | • Assign additional spectrum to allow new and existing companies to provide bandwidth-intensive broadband services
| | • Allow operators to engage in spectrum trading
| Promote effective competition and encourage | • Encourage multiple providers to share physical networks (wireline and wireless), which can be more efficient, especially in low-density |
Chapter 2. Policy Approaches to Promoting Broadband Development

<table>
<thead>
<tr>
<th>investment areas</th>
<th></th>
</tr>
</thead>
</table>
| **Facilitate access to rights of way** | • Facilitate access to public rights-of-way available for building broadband networks. This can help ease construction of both long distance (backbone) and local connections
• Develop policies that provide open access to government-sponsored and dominant operator networks enable greater competition in downstream markets |
| **Facilitate open access to critical infrastructure** | • Develop policies that provide open access to government-sponsored and dominant operator networks enable greater competition in downstream markets
• Consider implementation of local loop unbundling if necessary to facilitate competition |

Source: Telecommunications Management Group, Inc.

2.3.5 Encouraging Adoption: Promoting Demand for Broadband

Countries are beginning to view broadband promotion not only as a problem of supply of broadband (access to networks), but also as a problem of demand for it (adoption by businesses, government, and households). As a result, demand facilitation is becoming an important part of broadband development strategies and policies. Chapter 6 discusses demand-side policies in more detail.

Most of the experiences to date in stimulating demand for broadband applications and services come from developed countries. Similar policies may work more or less well in developing countries, where economic and social conditions differ; the ability to adapt the lessons learned and the successful policies to local needs will be critical. This particularly applies to policies that are focused on demand-side issues, where culture and socio-economic status are important variables. For example, with the first availability of broadband services, demand (measured by subscriber growth, for example) may be initially very high—reflecting pent-up demand among users who previously had no broadband access. In such cases, governments may decide that there is no need for demand stimulation. In Kenya, for example, at the end of September 2010, broadband subscriptions increased to 84,726 subscribers from 18,626 in the previous quarter (a growth rate of over 450 percent) without any specific attempts by the government at demand-side stimulation.\(^{110}\)

As time passes, however, it can be expected that demand growth will slow as the potential pool of users evolves from motivated early adopters to potential users that do not necessarily understand all that broadband has to offer and may be concerned with the potential threats to privacy and data security. This is when government policies to stimulate demand may have the most beneficial impact. By educating users through digital literacy programs, governments can help drive adoption to a broader user base and educate them at the same time. Such programs may become increasingly important as adoption rates rise in order to avoid the social and economic inequities associated with broadband “haves” and “have nots.” One important issue that policymakers should consider as they address broadband demand development is the opportunity cost of using (limited) public monies for broadband demand programs as opposed to other worthy public uses. In some cases, governments have decided that stimulating broadband demand was important enough to reaching national economic and social goals. This may not be the case in all countries, particularly in those countries with the fewest resources to spare.
The role of government in stimulating demand will vary by country. In some countries, with populations that are more technically literate, there may be less need for direct government intervention. The appeal of social networking and video streaming as an entertainment source may be more self evident than more mundane uses such as e-government or multimedia mail. In such cases, demand will be driven by attractive offerings made available by private sector developers. In other cases, however, basic illiteracy, lack of understanding of what the Internet can do, or cost may require governments to step in to help fill out and aggregate demand particularly among at-risk groups. Policies to support digital inclusion will be an important leveler to ensure that broadband can bring benefits to all segments of the population.

Efforts to increase demand typically fall into three categories: awareness, affordability and attractiveness. In order to drive broadband adoption and use, policies must address these three categories, especially targeting those populations that are generally less likely to adopt and use broadband Internet services. Mechanisms to address awareness include improving digital literacy, and encouraging the use of broadband in education and small and medium enterprises (SMEs), while affordability efforts focus on costs of both hardware and services, and attractiveness initiatives include promotion of services, applications and local content as well as delivery of government services over the Internet (e-government). E-literacy and e-skills, in particular, are vital for broadband diffusion to succeed. Recognizing this, governments with high penetration and adoption have been very active in trying to raise e-literacy. The three main categories of broadband adoption barriers are discussed further detail in Chapter 6.

Table 2.4 provides an overview of some of the policies that governments can use to promote demand for broadband applications and services, including through building programs to provide users with a place to go to get access.

Table 2.4. Checklist of Policies to Promote Demand for Broadband

Infrastructure	• Connect schools to broadband networks
	• Make government an anchor tenant
	• Expand access to underserved communities with USF support
	• Construct community access centers
	• Consider expanding universal service to include broadband
Services, applications and content	• Undertake government-led demand aggregation
	• Provide e-government applications
	• Promote creation of digital content
	• Implement reasonable intellectual property protections
	• Ensure nondiscriminatory access
Users	• Provide low-cost user devices in education
	• Develop digital literacy programs for citizens
	• Address content and security concerns
	• Facilitate affordability of broadband devices
	• Monitor service quality
	• Support secure e-transactions
	• Provide training to SMEs

Source: Telecommunications Management Group, Inc.
2.3.6 Consideration of Other Sectors of the Economy and Society

As policymakers and regulators consider policies and strategies to promote broadband development in their countries, it will be important to consider the issues in the broader context of larger economic and social goals. Broadband applications and services are increasingly intersecting with virtually every other major sector of the economy—including education, health, banking, the environment and climate change, and cybersecurity—and telecommunications/broadband policymakers and regulators will likely need to coordinate their efforts with their counterparts in other areas of the government to achieve larger policy objectives, whether they be social, economic or political.

Tackling such cross-sector goals will require close coordination among various regulators so that policies and approaches support each other. It will also require policy approaches and regulatory frameworks that are broad enough to allow policymakers to consider the relevant interrelated issues, as well as a high degree of committed leadership at the most senior levels to ensure that all parts of government work together to promote the development of broadband as part of the more general goals of promoting social and economic growth. Despite increasing recognition of the importance of broadband and its impact on the policies and implementation of programs in other sectors, most countries’ laws do not typically address the jurisdictional issues related to other sectors of the economy vis-à-vis broadband. As a result, it will be increasingly important for governments to adopt provisions outlining the cooperative arrangements between the ICT/broadband regulator and other governmental agencies. For agencies not used to working together—and which come to the same issues with vastly different points of view—such guidelines or arrangements will be crucial to ensuring that policies and decisions are mutually supportive of both broadband development and sector-specific goals and programs. This section briefly describes how broadband development policies interact with policies in other key sectors of a country’s economy. Specific examples of such collaboration and the ways broadband can support other sectors of the economy are found in Chapter 1. To view how applications and services developed within these other sectors can help to drive demand for broadband, see section 6.4.

2.4 Financing Broadband Development

In the past 20 years, markets have liberalized, competition has increased and the private sector has been the primary vehicle for financing telecommunications projects, especially in profitable areas. Nonetheless, in many developing countries, there are still significant barriers to entry and legacy dominant carriers continue to control markets and distort competition. Thus, the government’s primary role has been two-fold: to develop policies that support and encourage private sector investment while also seeking more effective ways to regulate dominant carriers and promote competition.

Today, most countries emphasize competition and a significant role for private sector investment to spur the growth of their broadband markets. In developed countries, and some developing countries, the majority of the private investment likely comes from within the country itself. In the least financially endowed countries, however, private investment may also come from foreign sources. Governments seeking to promote broadband development in their countries should bear in mind that investors and companies around the world may be looking for opportunities to invest in good projects wherever they are located. Thus, attracting foreign private investment—through appropriate incentives, a clear regulatory and legal environment, and a good development plan—may be important components for filling out a broadband strategy.

Where governments choose to finance broadband networks, they should avoid replacing private investment or substituting for the normal operation of market mechanisms. Rather, governments should facilitate and support private sector investment and be capable of developing, promoting and whatever, the cost of development in such countries may not be excessive compared to the costs that are otherwise incurred. Where governments choose to finance broadband networks, they should avoid replacing private investment or substituting for the normal operation of market mechanisms. Rather, governments should facilitate and support private sector investment and be capable of developing, promoting and
implementing timely policies based on a thorough understanding of the market.112 Thus, an essential element in effectively deploying broadband is the ability to find an appropriate financing model in which government oversight and intervention is focused mainly on funding and financing only those initiatives targeted at actual or expected market failures in the availability of broadband network and driving the early adoption of broadband services.

In addition to private sector investment and direct funding by governments, several other options exist for countries to finance broadband deployment, including government grants or subsidies to both private and public entities and partnerships where private funding is matched by government. The sections below briefly address the main ways governments can support the financing of broadband development.

\textbf{2.4.1 Government Support to Enhance Private Investment}

As stated by the 2004 Report of the Task Force on Financial Mechanisms for ICT for Development (ICT4D), the engine of ICT development and finance over the past two decades has been private sector investment, including foreign direct investment (FDI) by an increasingly diverse and competitive array of multinational and regional ICT sector corporations.113 Companies target and provide service to profitable, high revenue customers, neighborhoods, and regions to the detriment of those that are less commercially viable. This is the result of the tendency to see profitability and return on investment as drivers for investment in a private investment environment.

In addition to the purely economic decisions involved, private investment also depends heavily on the regulatory climate. The government’s challenge is to put in place the necessary policy measures and regulatory framework to allow and encourage the deployment and financing of broadband networks as widely as possible, and thus ensure that not only high value users receive high quality services, but that the benefits of broadband can be spread throughout all populations and areas.

The OECD, based on a survey of broadband policies in member states, identified particular policy initiatives that may promote broadband investments, including policies to:

- Improve access to passive infrastructure (conduit, poles, and ducts) and to co-ordinate civil works as an effective means to encourage investment.
- Ensure access to rights of way in a fair and non-discriminatory manner.
- Encourage and promote the installation of open-access to passive infrastructure when public works are undertaken.
- Allow municipalities or utilities to enter telecommunication markets. Where there are concerns about market distortion, policymakers could limit municipal participation to basic investments (e.g. the provision of dark fiber networks under open access rules).
- Provide greater access to spectrum (which is a significant market barrier to wireless broadband provision) and to adopt more market mechanisms to promote more efficient spectrum use.114

These policies have been used by numerous countries to spur the build-out of broadband networks. In Korea (Rep.), for example, thanks to greater market liberalization over the past decade, a number of new service providers entered the telecommunications market and began to fund and deploy fiber-based networks. Many advanced broadband networks are now available and the country has an impressive number of users.

In Africa, wireless broadband licenses have been granted by governments since 2004, allowing mobile operators to roll out networks capable of supporting high speed data. Although uptake was initially
slow, several factors have led to a growing number of African operators boosting investments for 3G or 4G, including: (i) more affordable international and backhaul capacity; (ii) increasing competition in the mobile sector; (iii) greater demand for more advanced services (e.g., through the launch of e-health and e-education projects relying on mobile as well as other technologies); (iv) slower growth in voice subscribers and revenues; and (v) the lack of wireline networks on the continent.\footnote{115}

In some cases, private investors may also look to multilateral investment banks to assist in financing, particularly where investment proposals are perceived by potential investors as higher risk transactions, or where difficult liquidity conditions and uncertain economic prospects are seen as additional risk factors. Such conditions decrease the possibility of private financing and/or raise the costs of financing. In such cases, investment banks have become involved in broadband projects. The European Investment Bank (EIB), for example, is already lending an average of EUR 2bn each year to support broadband projects. The EIB develops and finances pilot projects and innovative funding schemes.

2.4.2 Fiscal Support to Facilitate Broadband

There will be cases where regulatory reform and private sector investment still do not permit a government to reach its broadband development goals. In those cases, policymakers may turn to fiscal support to fill broadband development gaps. Fiscal support comprises assistance provided by the government to a company or its customers in the form of cash subsidies, in-kind grants, tax breaks, capital contributions, risk bearing, or other fiscal resources.\footnote{116}

Economic Justification of Fiscal Support

Fiscal resources are limited and face competing demands from many sectors. As a result, policymakers considering providing more direct support for broadband development must carefully analyze the expected costs and benefits of providing that support. First, a persuasive case must be made that the benefits of supporting broadband development are likely to outweigh the cost to be incurred by all participating private and public sector entities, as seen from the viewpoint of the economy as a whole. Fiscal support should not be provided for components of the broadband strategy that will leave the economy worse off than without it. Second, if a component is overall desirable for the economy, it must be determined how much fiscal support should be provided.

For example, the government of Australia committed in its 2008-09 budget to base its spending in infrastructure projects on rigorous cost-benefit analysis to ensure the highest economic and social returns to the nation over the long term. The National Broadband Network (NBN) is an open access wholesale-only network that was expected at that time to be capable of delivering fiber-based coverage at 100 Mbit/s to 93 percent of all premises and fixed wireless and satellite coverage at 12 Mbit/s to the rest. The total construction and initial maintenance cost was estimated at AUD 35.7 billion, including AUD 27.1 billion of equity contributed by the Australian government. A study in 2009 also estimated that, in present value terms, the cost of the NBN would exceed benefits by AUD 14 billion to AUD 20 billion. The study concluded that the investment should not be undertaken if the total cost exceeds AUD 17 billion, even if demand for high-speed service is rising rapidly and the alternative would be that the typical consumer would not have access to more than 20 Mbit/s.\footnote{117}

Fiscal support often involves the direct use of government money. Subsidizing investment requires cash outlays up front that will never be recovered. Subsidizing use involves payments during a long time, possibly for the lifetime of the strategy. Investing equity in PPPs involves cash contributions up front that may be recovered in the long run (e.g., as dividends) to the extent that the ventures are commercially successful. Long-term debt financing comprises cash outlays that may be recovered over the years, provided the beneficiaries do not default on repayment obligations.
Fiscal support that does not involve direct use of government money also has a cost. Giving investors free use of spectrum for last mile access has an opportunity cost related to the revenues that the government could obtain from the sale of spectrum licenses for profitable business use. Preferential taxation (e.g., income tax holidays, custom duty exemptions) implies fiscal revenues foregone. On-lending international development loans and credits reduce funding available from these sources for other initiatives in the same country. Regulatory risk (e.g., changes in the pricing rules) can be mitigated through government guarantees, which create contingent liabilities. The government can pick up part of the commercial risk of uncertain market outlook for new investments by committing to future purchases, which may result in obligations unrelated to actual need.

Estimating costs and benefits

In order to determine whether to move ahead with some form of fiscal support for broadband development, the costs and benefits must be determined. Economic costs and benefits of a component of the broadband strategy are valued to reflect real scarcities of goods and services. Financial analysis values costs and benefits at market prices. Both economic and financial analyses compare the situations with and without the component. Sunk costs are not taken into account.

The principles for estimating economic and financial costs and benefits are well known, but applying these principles in practice is subject to assumptions on market and technology development. This can be a challenge, especially when some players (e.g. incumbent operators) have more detailed information and analytical capabilities than others (e.g. government authorities, new entrants). To some extent, this limitation can be overcome by using the calculus of costs and benefits to provide guidance on fiscal support but relying primarily on market mechanisms (e.g. minimum subsidy auctions) to reach the final decisions on support awards.

When costs and benefits can be measured in monetary terms, economic costs and benefits can be derived from financial costs and benefits. Transfers from one part of the economy to another, such as sales taxes or custom duties, are excluded from the cost stream. Prices that are distorted by market interventions, such as unskilled labor, foreign exchange, capital, and the radio spectrum, are adjusted to reflect their real scarcity in the economy. External costs (e.g., business losses resulting from digging up streets to install fiber) should be quantified, to the greatest extent possible.

Benefits can be harder to calculate. Starting from the financial analysis of network and service providers, economic benefits can be estimated by adding consumer and producer surpluses to the revenue streams. For example, U.S. consumers have been increasingly willing to spend more money for fixed broadband connectivity than they are actually paying. This resulted in a consumer surplus of about USD 32 billion in 2008, up 58 percent from about USD 20 billion in 2005. Higher speed is expected to add a further USD six billion to existing customers. The study underestimated the wider economic impact of broadband, as it excluded business users and wireless access.

Comparing costs and benefits

The net present value (NPV) of the expected benefits is the discounted monetary value of benefits minus costs over time. For the government, valuing costs and benefits to reflect real scarcities in the economy, an economic NPV>0 means the project would have a positive effect on the country’s welfare. For a private company, valuing costs and benefits at market prices, NPV>0 means the project could be commercially viable. This analysis can be applied to the broadband strategy as a whole as well as to each major separable component.

Projects that have negative economic NPV should not be supported. Projects that have positive financial NPV do not need support. Components that have positive economic NPV but negative financial
NPV would be good for the economy, but are unlikely to be undertaken as a business. Fiscal support of these components would be justified, up to a maximum support equal to the absolute value of the (negative) financial NPV. This is the amount of support that would make the component just viable commercially. Support above this level would not be justified.

Types of Fiscal Support

Private investment should be protected

Where government does decide on providing some type of fiscal support, the re-creation of monopolies with public support is a fundamental concern to many governments around the world, as is avoiding contributing to established carriers’ dominance and displacing private investment. The EU supports the construction of broadband infrastructure and Internet take-up through both rural development and structural funds, and has clarified the application of state aid rules on use of public funds for broadband deployment.

The 2009 European Commission’s Community Guidelines for the application of State aid rules in relation to rapid deployment of broadband network (“State Aid Guidelines”) were specifically drafted to address concerns relating to public support, and contain safeguards to ensure that any broadband infrastructure funded with public money does not favor existing operators, including provisions that a company receiving public monies must provide effective open access to its competitors to allow them to compete in an equal, non-discriminatory way. Although the State Aid Guidelines focus on the role of public authorities in fostering the deployment of such networks in unprofitable areas (i.e., areas where private operators do not have the commercial incentives to invest), they clearly note that state aid should not replace or “crowd out” private investment. Instead, public funds rather should complement private operators’ investments and thereby achieve higher and faster broadband coverage.

Box 2.4. EU Experience with State Aid for Financing Broadband

In the context of market reform, good practice in financing universal access projects using public financing other than funds in international jurisdictions includes the practice of setting out rules or guidelines on the provision of public funding for universal service and access. The EU State Aid Guidelines for funding broadband assist in bringing UAS through the presence of clear rules that:

- Facilitate NGA and broadband investments from public funds in order to bring broadband connectivity to underserved areas.
- Enable the rapid deployment of broadband and especially NGA networks, thus avoiding the creation of a new digital divide.
- Due to the conditions laid down for the granting of state aid (such as open access, open tenders) allow the maintenance of competition, which will in turn contribute to ensuring better and more broadband services.
- Although historically funding decisions could be made on a case by case basis in the EU, in light of the significant level of investments, it has been recognized that a level of certainty is required for all stakeholders, hence the need for the Guidelines.

In the United Kingdom, for example, the government had set a goal in 2009 of ensuring 100 percent access to next generation broadband and had planned to support the roll-out of fiber-based broadband
and other next generation technologies via a tax on telephone lines. Since then, BT has started initiatives to roll-out fiber broadband to most of the United Kingdom by 2015. However, BT has made clear that on its own, it will not push beyond 66 percent fiber coverage, and that public sector support of some form will be required to go beyond that, be it at a national level via a central government administered funding support mechanism or by regional funds and local partnerships to boost coverage in particular areas. Within this context, BT has announced it plans to roll-out superfast fiber broadband to unprofitable areas with the help of European funding. The European Regional Development Fund’s (ERDF) Convergence program is investing GBP 53.5m, or just over 40 percent of the total funding, with BT providing the remaining GBP 78.5 million.

Direct Government Intervention

Market-based investments should be the mainstay for broadband deployment, but some degree of direct government funding may be required to enable and complement the market, particularly in areas that are not considered economically viable by private operators. The form of this more direct intervention will vary from country to country. In many countries, subsidies are used to underpin private sector investment.

Some governments have effectively used subsidies and other financial incentives to spur broadband deployment. Canada, Korea, Germany, Greece, Malaysia, Portugal, Singapore, the United Kingdom and the United States have all announced and are implementing substantial direct government funding for network infrastructure development. In some countries (e.g., the United States, United Kingdom, Canada, Germany, Portugal and Finland) measures to expand broadband access and to bolster connection speeds have been included in the country’s planned economic stimulus packages. Most of these plans seek to speed up existing links to build faster wireline and wireless next generation networks. Countries are spending public funding for rolling out high-speed networks to areas that are underserved or unserved by commercial ISPs. In other countries, however, the debate over public financing is not over how much to contribute to broadband efforts, but rather how to cut budgets in line with the economic realities of 2011. In such a context, funding for broadband may assume lesser importance compared to other, more important, social and economic goals. Consequently, the focus on finding private sector-led solutions is likely to increase.

A few governments are pushing the build-out of broadband networks through direct investment by a government-backed company specifically tasked with building new networks. In most, if not all cases, these government-led efforts will deliver only wholesale services that service providers can then use to offer retail services. In April 2009, for example, Australian Prime Minister Kevin Rudd announced that the government would commit AUD 43 billion (USD 30 billion) to building a National Broadband Network (NBN) across Australia, with wireline services reaching 93 percent of the population and the other 7 percent to be served by wireless or satellite broadband networks. In March 2011, Qatar announced a similar plan for a fiber-to-the-home network to reach 95 percent of the population by 2015, with a government-backed company focusing on supplying the passive infrastructure for the network. In Africa, a USD 7.7 million contract to build a wireless Internet facility was awarded to Korea Telecom in 2007 by the Rwandan government. This marked the entry of wireless broadband technology in Africa. In the next three years, the Rwandan government is aiming to provide access to high-speed Internet to more than four million Rwandans through the wireless Internet facility and the Kigali Metropolitan Network project.

Public Private Partnership (PPP) Models

Apart from implementing policies and regulations to ensure competition (between networks or services), the public sector can promote broadband development by sharing financial, technical or
Chapter 2. Policy Approaches to Promoting Broadband Development

operational risks with the private sector. Indeed, experience has shown that in some cases, purely private sector-led development, or direct government or subsidy funding may not be sufficient to reach certain areas, provide certain services or provide ongoing public funding, even with “smart subsidies.” Within this context, many countries are now adopting approaches that combine public and private sector skills and resources, as well as combining public financing with some form of matching funding from private investors. This helps to reduce investment risk while also recognizing that market participation is essential to financial sustainability of projects. PPPs are also increasingly being considered as a solution for ICT development, including for broadband backbones and the supply of transmission bandwidth sufficient to catalyze advanced broadband applications.

In Africa, for example, much attention has been given in recent years to the funding and financing of projects aimed at bringing more affordable broadband connectivity to the continent by means of submarine cables, regional fiber-optic backbones, and satellites. Such projects have generally been financed through a mixture of public and private sector funding. Alcatel-Lucent, for example, signed a turnkey contract in 2010 valued at over USD 500 million with Africa Coast to Europe (ACE), a newly formed consortium composed of 20 parties (operators and governments) linking Cape Town in South Africa to Penmarch in France via a submarine cable network. This new system, with 40 Gbit/s capability, will span over 17,000 km and will deliver broadband communications to and from the African continent and Europe.

In Finland, the main objective of the December 2008 plan for 2009-2015 is to ensure that more than 99 percent of the population in permanent places of residence, as well as businesses and public administration offices, are no further than two km from a 100 Mbit/s fiber-optic or cable network. The government expects telecommunications operators to increase the rate of coverage to 94 percent by 2015, depending on market conditions, while public finances will be used to extend services to sparsely populated areas where commercial projects may not be viable, bringing coverage to the target of 99 percent. The plan stipulates that where public financial intervention is required, it should be in the form of public-private partnerships, with federal intervention only being allocated to projects deemed not viable for 100 percent private investment. The plan limits such interventions, providing that the federal subsidy amount cannot exceed one-third of the total project cost, with additional EU and municipal support capped at another one-third, thereby requiring private participants to invest at least one-third of the cost.

Spain has relied greatly on inputs from the private sector through PPPs. Of the public funds used, EUR 31 million were structural funds and EUR 53 million were in zero-interest public credits. Operators invested about EUR 280 million. The funded projects use Asymmetric DSL (ADSL), WiMAX, and satellite technologies depending on geography, roll-out dates and available technologies. The government set the minimum download speed at 256 kbit/s and prices were capped at a “reasonable fee.”

Malaysia’s 2006 MyICMS strategy also set out a number of goals for broadband services, as well as strategies to achieve such goals. The government is funding a fiber optic network under a public-private partnership with Telekom Malaysia that is aimed at connecting about 2.2 million urban households by 2012. Under the terms of the Agreement, government committed to investing MYR 2.4 billion (USD 700 million) in the project over 10 years, with Telekom Malaysia committing to covering the remaining costs.

Local efforts, bottom-up networks

There are also some interesting examples of how local efforts or bottom-up networks have resulted in the financing of broadband deployment. The Universal Access and Service Module of the infoDev ICT Regulation Toolkit (Module 4), for example, notes that the emergence of municipal broadband networks
provides an additional source of financing, from local governments, for ICT service development. The toolkit highlights the Pirai municipal network in Brazil as a successful initiative that was based on the needs of the municipal authority and included e-government, education and public access, with a range of application support and development activities. The project established numerous broadband access nodes that allowed all local government offices and most of the public schools, libraries, and general public access points to be connected. Initially, all financing was provided by the municipal government. A commercial enterprise was later established, but continues to be funded and supported by the municipality.

Municipalities in some European countries (such as the Netherlands and Italy) have also taken the lead in orchestrating broadband initiatives in their region (see Box 2.5). A 2010 study argues that this has been due to the fact that incumbent cable and telecommunication carriers have been uncertain about the prospects of NGA networks in certain areas, that there is an increasing demand for broadband services, in particular double- and triple-play services as well as higher network capacity in both urban and rural areas, and that local (and national) governments perceive broadband networks as a means of reducing the digital divide and stimulating economic development of regions. This, the study claims, has led municipalities in some European countries to become major investors in NGA networks.

Box 2.5 Municipal Broadband Initiatives

In Italy, Terrecablate Siena is an example of a publicly owned carrier, which participated in the Terrecablate consortium ("Società Terrecablate Reti e Servizi S.r.l." was created in 2005 and comprised of the Province of Siena, 36 municipalities and three mountain communities of the Province of Siena). The project is funded with public money and aims at maximizing access to connectivity within rural areas.

In the Netherlands, the Draadloos Groningen (Wireless Groningen) Foundation signed an agreement in 2009 with Unwired Holding to deploy and manage a citywide wireless broadband network. The business model used is the “anchor tenant” model whereby the anchor tenants (large organizations within a city) fund the network and use it for their own applications. The Foundation’s members are the municipality of Groningen, the Hanzehogeschool Groningen, the University of Groningen and the University Medical Center. These four members of the foundation are also the initial anchor tenants. Each of them are contributing EUR one million over a four-year period, which is aimed at guaranteeing financial support for the network in its start-up phase, and a commitment to use it for as many purposes as possible. Noorderpoort College and the Groningen police have also signed up to use the citywide network. Draadloos Groningen and Unwired Holding will begin selling access to the network to other governmental and commercial organizations, as well as to individuals.

Universal Service Funds (USF) for Broadband

In the past, many countries defined their USFs in a way that gave priority to providing voice telephony (traditionally provided over wireline) services to unserved or underserved regions. Recently, however, a number of countries have revised their definitions and scope of the funds to include broadband, mobile telephony, or Internet access. For example, the EU and the United States are adding resources to existing rural development or USFs to accommodate broadband. Some countries have turned or are considering turning broadband provision into a USO and are reforming their universal service policies. Other countries are contracting commercial providers to build the network with service obligations.
Chapter 2. Policy Approaches to Promoting Broadband Development

through a competitive bidding process (e.g., France, Ireland, Japan and Singapore). Chapter 4 discusses these issues in more detail.

Comparing Alternative Instruments

Not all fiscal support instruments are equally effective. They differ primarily in terms of accuracy, and also regarding transparency, targeting, cost, and sustainability.138

Figure 2. illustrates which instruments of fiscal support can help overcome each type of obstacles to broadband development ahead of or beyond the market (i.e., their effectiveness in addressing specific impediments to broadband development).139 For example, subsidizing investment is particularly effective at reducing investors’ costs and also can help overcome financial market failures. Alternatively, subsidizing use of broadband is an effective way to increase revenues by making service affordable to people that otherwise would not buy the service; however, it can also enhance competition among firms to provide the service and reduces commercial risk by building up demand that otherwise would materialize at some point in the future as incomes rise and costs decline. The choice of instrument can be further narrowed down by considering the transparency of the instruments' cost and its ability to effectively target specified categories of beneficiaries.140

Figure 2.4 Accuracy of Fiscal Support for Broadband Development*

<table>
<thead>
<tr>
<th>Objective</th>
<th>Subsidy of investment</th>
<th>Subsidy use and devices</th>
<th>Rights of way, spectrum</th>
<th>Preferential taxation</th>
<th>Equity Investment</th>
<th>Long-term loans</th>
<th>On-lending international loans</th>
<th>Partial risk guarantees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce costs</td>
<td>[\text{\color{black}\textbf{\textbullet}}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
</tr>
<tr>
<td>Increase revenues</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
</tr>
<tr>
<td>Facilitate competition</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
</tr>
<tr>
<td>Improve business environment</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
</tr>
<tr>
<td>Address financial market failures</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
</tr>
<tr>
<td>Reduce regul. and political risk</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
</tr>
<tr>
<td>Reduce commercial risk</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
<td>[\text{\color{black}\textbullet}]</td>
</tr>
</tbody>
</table>

* The dark shading depicts areas where the instrument is particularly effective, while the light shading illustrates additional effects.

2.5 Measurement, Monitoring and Evaluation: Checking Progress

2.5.1 Why Measure Performance?

Policymakers seeking to promote broadband development need mechanisms to ensure that their objectives are being achieved and to identify if corrections and refinements to policies and programs are needed. In short, they need to measure progress through regular monitoring in order to identify successes and failures. Different countries will adopt broadband strategies with different objectives, which will affect the appropriate indicators to monitor. It is best that the indicators most appropriate for the selected objectives are built into the design of the programs from the beginning, and the necessary resources for data collection and analysis are allocated from the start. Broadband indicators are also needed for analysis, for example, to examine trends and the link between broadband adoption and social and economic development. They are also important for monitoring license compliance in areas such as coverage and quality. As a result, the specific indicators appropriate for a particular country, the frequency of data collection and reporting, the geographical unit of analysis, etc. will also differ from country to country. Consequently, the following section provides a range of options rather than a single prescription for countries to consider when looking at measurement issues.

2.5.2 What to Measure?

The broadband indicators likely to be of the most interest to policymakers are availability, demand, quality and pricing (Figure 2.). These indicators relate to local retail access rather than wholesale and backbone markets. There are additional indicators that may be useful for monitoring and analysis, including monetary-based statistics such as broadband revenues. The Partnership on Measuring ICTs for Development (Partnership), a coalition of intergovernmental agencies has produced a methodological manual identifying core ICT statistics including several broadband indicators. This provides a useful list of key broadband indicators based on definitions with international consensus.

Figure 2.5. Categories of broadband indicators

![Diagram of broadband indicators]

Source: Telecommunications Management Group, Inc.

Availability (Supply)

Availability refers to the ability to access wireline and wireless broadband networks and services. Different modes of providing broadband exist; therefore, different indicators of availability are needed for each of the modes. In the case of wireline systems, availability can be measured by the percentage of households passed. This is a conventional measure in the cable industry that can be extended to fiber and DSL as well. The indicator reflects the number of copper (telephone), coaxial (cable television) or fiber optic lines accessible by a premise, regardless of whether users actually subscribe to the broadband service. It may also be useful to distinguish between the type of technology, such as DSL,
cable modem and fiber-to-the-premise (FTTP). This provides an idea of the relative importance of each to broadband development as well as the degree of intermodal competition between technologies. It may also be useful to provide a breakdown of subscriptions by speed ranges and geographic area. These considerations are becoming increasingly important as countries seek to deploy minimum speed broadband services to unserved and underserved populations.

In the case of wireless, the obvious indicator of availability is signal coverage. This can be measured in terms of population or area. The ITU has developed a definition for wireless broadband coverage in the form of 3G/4G network coverage, though the data are not reported for most countries.145 Parallel definitions for fixed wireless, satellite and wireline coverage do not exist within the ITU definitions. However, several countries in the OECD report these data using definitions developed either by national governments or by industry organizations.146 They may be adapted by countries wishing to develop comprehensive coverage indicators.

\textbf{Adoption (Demand)}

While supply side indicators give a general idea of high-speed Internet availability, they do not reflect concrete adoption or usage. Measuring the uptake/adopter of wireline and wireless technologies, however, is significantly more difficult than measuring the supply. While coverage measures the theoretical ability to access broadband services, the number of subscribed connections measures actual demand for the service. Subscriptions should be minimally broken down by wireline and wireless broadband and preferably additional categories to allow for deeper analysis. A growing number of countries are measuring broadband access by households and businesses through surveys typically carried out by the national statistical offices. These demand side surveys also typically include a number of indicators on use, which can illuminate factors contributing to broadband take-up.

Determining the number of wireless broadband subscriptions presents several methodological challenges. Although it is useful to distinguish between different types and modes of wireless broadband delivery such as mobile, fixed wireless and satellite, a challenge is that the line between fixed and mobile broadband is not always clear. For example, in some countries there is a legal rather than technical restraint on nationwide roaming for some wireless broadband networks. Even with this restriction, users can move with their mobile handset or data card within a limited area so the distinction between fixed and mobile is not so clear. Another consideration is that the use of wireless broadband on laptops via data cards is different than use via mobile handsets, and countries define wireless broadband differently. Some countries only consider the former to be mobile broadband and consequently include it in their overall broadband counts, while smartphone broadband use can go uncounted, which could lead to misleading results.

Conversely, another major issue is that users may have the theoretical ability to access mobile broadband services if they have an appropriate handset, regardless of whether they are using it or not. Counting this theoretical availability can significantly overstate the take-up of wireless broadband services in a country. Therefore, it is important to distinguish between active and inactive data subscriptions. The OECD has defined active wireless subscriptions as access to the Internet in the previous three months or the use of a separate data subscription.147 However, even activity is a blurred concept since some countries count access to any high-speed service such as video chat, mobile television, etc. and users may not be accessing the Internet.

Regulators in a number of countries publish broadband subscription data, highlighting trends and making comparisons. The Turkish Information Communications and Technology Authority, for example, contrasts the availability of different broadband subscriptions with the European Union and also
provides a breakdown of speeds over ADSL, the most prevalent wireline broadband technology in the country (Figure 2.).

Figure 2.6. Wireline Broadband by Technologies and Speed (ADSL) in Turkey Percent, 2010

![Breakdown of ADSL subscriptions by speed](image)

Note: Data for EU refer to January 2010.

Source: ICTA, Annual Report 2010.

There is no international indicator on the percentage of the population that uses broadband. In any case, this would be related to Internet users where surveys are carried out in a number of countries on the percentage of Internet users. This is a useful supplementary indicator for monitoring and evaluating broadband markets.

Quality

In order to use or fully utilize certain applications, certain performance parameters must be met by the broadband connection. Two of the most important are latency (the amount of time it takes for a packet to travel between sender and receiver) and speed, which can be monitored for both fixed and wireless networks. Other broadband performance metrics include signal quality, availability (“uptime”), complaint ratios and service activation and restoration times. Technical means exist to measure these aspects at various points in the link between the end user and the server providing the application. Such information is important to both policymakers—to ensure that the broadband networks and services being supplied are up to industry standards—and to consumers—who can use such information to decide which service will provide them with the highest quality. Many consumer complaints hinge on differences between advertised and actual speeds.148

In Bahrain, for example, the Telecommunications Regulatory Authority publishes quarterly reports measuring average download and upload speeds and DNS and latency times (Figure 2.).149 In the absence of regular monitoring some regulators publish links on their web sites to third party applications for measuring speed and other quality aspects.150
Figure 2.7. Average Download Speed (Two Mbit/s Packages) and Ping Time (Milliseconds), Bahrain, January-March 2011

![Graph showing average download speed and ping time](image)

Note: Ping time measures latency by taking the average round trip to servers located in Bahrain, Europe and the United States.

Source: Telecommunications Authority of Bahrain

Because differences exist in performance inside the ISP domain (the user and the server are within the ISP’s system), the national domain (the user and the server are on different systems but within the national territory) and the international domain (the user and server are in different countries), measuring for each domain yields diagnostic information useful for regulators, operators and consumers. For example, the Info-communications Development Authority of Singapore establishes different latency parameters depending on whether Internet traffic is national or international.¹⁵¹

Pricing

A government that launches a broadband initiative using public resources will want the service to be affordable to the intended beneficiaries. One could argue that prices need not be monitored in the case of purely private supply, where no public resources have been expended. However, when broadband is seen as an essential public utility, or where prices are high due to market failure, governments may want to monitor pricing. Concerns about this issue have prompted countries, such as India and the United States, to include “affordable” broadband access as a key factor or goal in their broadband initiatives.¹⁵²

Competitive broadband markets typically have multiple tariffs with varying levels of bandwidth, data download caps and discounts. This presents methodological challenges in terms of compiling comparative broadband tariff indicators across technologies. Baskets of monthly services are often used as a common measure of price trends that factor in caps and speeds. The key components include the monthly price of broadband service, the corresponding speed and if applicable, the cap and prices for exceeding the cap. Capped versus unlimited packages pose comparison problems, but can be mitigated somewhat by comparing price per advertised Mbit/s.

An example comparing wireline and mobile broadband monthly prices for selected economies is shown in Table 2.5. The example illustrates the various ways of looking at broadband pricing and highlights comparability issues. One notable aspect is the differences between entry-level prices, speeds and

¹⁵¹ Source: [Telecommunications Authority of Bahrain](https://www.tamb.gov.bh) ¹⁵² Source: [World Telecommunications/ICT Indicators Database](https://www.itu.int/prd/itd/itd_main.html)
affordability (in terms of price as a percentage of per capita income). For example, although an entry-level fixed broadband package in Turkey is almost twice as much as in Brazil, the Turkish tariff is a slightly better value since the download speed is twice as fast as in Brazil. Similarly, although the entry-level price for fixed broadband in Brazil is more than twice that of Vietnam, it is much more affordable in Brazil than Vietnam (although the value of the Vietnamese package is ten times more).

Mobile broadband pricing is a bit more difficult to compare since some operators do not guarantee advertised speeds. Instead prices tend to vary by the volume of data downloaded per month. Nevertheless, as the table below shows, mobile broadband is the same or lower price than wireline broadband (except in Brazil). It is important to note that mobile broadband is more often capped than wireline and real mobile broadband speeds are also lower in many cases.

Table 2.5. Wireline and Mobile Broadband Monthly Prices, Selected Countries, USD, 2011

<table>
<thead>
<tr>
<th></th>
<th>Brazil</th>
<th>Kenya</th>
<th>Morocco</th>
<th>Sri Lanka</th>
<th>Turkey</th>
<th>Vietnam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed broadband basket (unlimited)</td>
<td>$16.99</td>
<td>$39.36 †</td>
<td>$11.86</td>
<td>$14.18</td>
<td>$30.10</td>
<td>$7.93</td>
</tr>
<tr>
<td>Speed (Mbit/s)</td>
<td>0.512</td>
<td>0.256</td>
<td>1</td>
<td>0.512</td>
<td>1</td>
<td>2.56</td>
</tr>
<tr>
<td>$/Mbit/s</td>
<td>$33</td>
<td>$154</td>
<td>$12</td>
<td>$28</td>
<td>$30</td>
<td>$3</td>
</tr>
<tr>
<td>% GDP per capita</td>
<td>1.9%</td>
<td>28.4%</td>
<td>4.4%</td>
<td>7.0%</td>
<td>3.5%</td>
<td>8.1%</td>
</tr>
<tr>
<td>Mobile broadband basket (1 GB)</td>
<td>$51.27</td>
<td>$26.24</td>
<td>$11.86</td>
<td>$4.34</td>
<td>$19.93</td>
<td>$6.34</td>
</tr>
<tr>
<td>Speed (Mbit/s)</td>
<td>1*</td>
<td>7.2**</td>
<td>1.8*</td>
<td>7.2**</td>
<td>7.2**</td>
<td>3.6*</td>
</tr>
<tr>
<td>$/Mbit/s</td>
<td>$51</td>
<td>$7</td>
<td>$1</td>
<td>$2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% GDP per capita</td>
<td>5.7%</td>
<td>18.9%</td>
<td>4.4%</td>
<td>2.1%</td>
<td>2.3%</td>
<td>6.5%</td>
</tr>
<tr>
<td>AAER 2010 LCU/1US$</td>
<td>1.7536</td>
<td>76.1926</td>
<td>8.3507</td>
<td>112.796</td>
<td>1.5054</td>
<td>18,919.10</td>
</tr>
<tr>
<td>GDP per capita</td>
<td>$10,816</td>
<td>$1,662</td>
<td>$3,249</td>
<td>$2,435</td>
<td>$10,399</td>
<td>$1,174</td>
</tr>
<tr>
<td>Fixed broadband basket 1 GB, LCU</td>
<td>29.8</td>
<td>2,999</td>
<td>99</td>
<td>1,600</td>
<td>45.31</td>
<td>150,000</td>
</tr>
<tr>
<td>Mobile broadband basket 1 GB, LCU</td>
<td>89.9</td>
<td>1999</td>
<td>99</td>
<td>490</td>
<td>30</td>
<td>120,000</td>
</tr>
</tbody>
</table>

Note: LCU=Local currency unit. AAER=Annual average exchange rate. † Advertised download speed. ** Theoretical download speed. †=Includes 30 minutes of on-net calls.

For fixed broadband, least expensive uncapped plan providing download speed of at least 256 kbps. For mobile broadband, least expensive plan offering 1 GB per month of download and download speed of at least 256 kbps.

Source: Adapted from Telefonica, VIVO (Brazil); Orange, Safaricom (Kenya); Maroc Telecom (Morocco); SLT, Dialog (Sri Lanka); TTNET, Turkcell (Turkey); VNN, MobiFone (Vietnam).

2.5.3 How to Measure?

Broadband indicators impact a number of parties. Government agencies responsible for broadband policy should consult internationally comparable indicators and identify those most suitable for monitoring and evaluation. Best practice suggests that national regulatory agencies should compile broadband statistics such as numbers of subscriptions, solicited from operators. This arises out of their mandate to regulate and monitor the sector. Ideally, policymakers consult with and cooperate with national statistical agencies that have the technical skills to produce demand side statistics through household and enterprise surveys, asking about broadband possession or use of different ICTs within households and businesses (or by individuals). Broadband operators play a key role, both as providers and consumers of the data.
The entities best positioned to provide supply-side data are the suppliers of the relevant services. It is common for provisions mandating the reporting of data to the government or the regulatory agency to be included in statutes governing the industry or in licenses or concession contracts. Irrespective of legal provisions, the principal challenge will be that of ensuring regular and timely reporting of the required indicators based on adherence to agreed-upon standard definitions and procedures.

Most governments do not monitor their country’s broadband development in a vacuum. They typically need data from other countries to put their nation’s high-speed market evolution in perspective and benchmark it with other countries. Brazil for instance compared its broadband penetration and forecast evolution to Argentina, Chile, China, Mexico and Turkey.

There are a number of international sources that harmonize and disseminate statistics for different countries. The ITU has been the traditional repository of supply-side data on telecommunications and now on ICTs including some demand-side data. Similarly, the OECD collects and disseminates a number of broadband indicators for its member countries as does EUROSTAT, the statistical arm of the European Union. All these organizations make the data available on dedicated websites (Table 2.6). The Economic and Social Commission for Latin America and the Caribbean (ECLAC) also recently launched a broadband indicator site for its members. In addition, several private sector entities publish broadband statistics on mobile broadband subscriptions as well as average download speeds and other quality metrics.

Table 2.6. Sources of Official Broadband Statistics

<table>
<thead>
<tr>
<th>Organization</th>
<th>Site</th>
<th>Note</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD</td>
<td>Broadband Portal</td>
<td>OECD member data. Includes broadband indicators covering penetration, usage, coverage prices, services and speeds.</td>
<td>http://www.oecd.org/document/54/0,3746,en_2649_33703_38690102_1_1_1_1,00.html</td>
</tr>
</tbody>
</table>

Source: Telecommunications Management Group, Inc.
Chapter 3. Law and Regulation for a Broadband World

3.1 Introduction

Throughout this Handbook, we refer to the two primary components necessary to promote broadband development—one related to supply (the availability and access to broadband networks, services, applications and devices) and the other related to demand (the adoption and use of broadband). As the world moves to a converged ICT environment, countries are revisiting their traditional legal and regulatory frameworks to introduce reforms, and developing new laws and regulations to address some of the supply and demand issues associated with developing broadband networks and services.

On the supply side, certain key legal and regulatory issues are being considered, such as determining how legal and regulatory licensing frameworks may better facilitate voice, video and data offerings. Other issues related to spectrum management reforms, Internet interconnection and infrastructure access policies. On the demand side, legal and regulatory issues are also arising. As more of our social, political and economic transactions occur online, it becomes critical to ensure user trust and confidence. Policymakers are therefore considering measures to ensure users’ privacy and rights online.

At this time, the legal and regulatory responses to many of these issues are still being debated around the world. As broadband expands and its full potential is realized, a clearer picture may emerge. This chapter discusses the key policies and regulatory approaches that are being considered and implemented by policymakers and regulatory authorities to address some of these issues.

3.2 Licensing and Authorization Frameworks

Technological convergence in the telecommunications and broadcasting markets is hastened by the growth of broadband networks, since the higher speeds and larger capacities of broadband create new opportunities for operators to offer an array of services, including voice, data and video. For example, two of the largest broadband network operators in the world, Comcast and Time Warner, began as cable television operators, but now derive substantial revenues from Internet and voice services, as well as from pay TV, particularly through their “triple play” packages.156 Broadband also supports the expansion of markets and competition, as well as helping to reduce prices, improve the efficiency of service provision and increase the variety of offerings for subscribers. To facilitate the supply of emerging wireline and mobile broadband networks, an enabling licensing framework is necessary.

Convergence and the distributed nature of networks and communications have unleashed a disruptive force across traditionally segregated industries which demand new, flexible enabling responses.157 Traditional, service-specific regulatory frameworks have typically required separate licenses for wireline, wireless and broadcasting networks, as well as for different types of services. In many instances, operators have been prohibited from offering services outside their traditional, rigidly defined industry—even though new digital broadband technologies make this easily possible. For example, IPTV was restricted in Korea (Rep.) until the IPTV Business Act of 2008 permitted telecommunications operators to offer television programs in real-time over their broadband networks.158 Within a year of enabling this converged technology and licensing three IPTV operators, Korea (Rep.) had more than one million IPTV subscribers.159

As this and similar cases demonstrate, distinctions between types of network infrastructure are becoming increasingly impractical in a converged environment. Thus, policymakers and regulators in both the developed and developing worlds are enacting reforms to transform legacy regulatory regimes so that they can effectively address converged networks and services. These efforts generally have two
key elements: 1) the introduction of the principles of technology and service neutrality and 2) the establishment of greater flexibility in key aspects of licensing and authorization frameworks, particularly the authorization of a wide range of networks and services under a single license. At the same time, there is expected to be greater reliance on competition law and regulation, as the historic restrictions contained in licenses and authorizations are progressively reduced.

3.2.1 Technology and Service Neutrality

Technology neutrality is based on the general premise that service providers and network operators should be allowed to use the technology that best meets the needs of their network and their customers’ demands; such choices should not be dictated by governments. In the licensing context, technology neutrality means that different technologies capable of providing similar or substitute services should be licensed and regulated in a similar way. In the broadband context, this means that broadband service providers abide by similar licensing processes and conditions regardless of whether they deliver services via wireless, DSL, fiber, cable modem or other technology. However, a licensing framework that is generally considered technology-neutral does not have to treat all providers in exactly the same way; it may treat certain broadband technologies or services differently. For example, the promotion of nascent services (e.g., VoIP) using a light-handed regulatory approach may warrant departure from technology-neutrality, at least on a temporary basis, to promote the development of those technologies. This also may be the case for wireless vs. wireline broadband technologies due to the need for separate spectrum authorizations and other spectrum-related matters, such as capacity constraints and avoiding interference.

Service neutrality is based on the similar premise that network operators should be allowed to provide whatever services their technology and infrastructure can deliver. In the past, due to the limitations of technology, networks were “purpose built.” As information and communications became increasingly digitized, however, it became possible for different networks to support similar or substitute services. Thus both cable and telecommunications networks can now support a wide range of voice, data and video services. More relevant for the case of developing countries, mobile service providers are increasingly able to offer such services as well. Given this convergence, constraining network operators’ services based on old conceptions of technology is no longer appropriate. Adoption of more liberal licensing regimes allow companies to provide a wide range of services under a single license or authorization, which thereby enables the operator to take “cues from the market as to which services are most in demand or most cost-effective.”

For example, Botswana, Ghana, Kenya, South Africa, Tanzania and Uganda have already implemented technology- and service-neutral licensing frameworks. In Tanzania, the Electronic and Postal Communications Act, 2010, specifically incorporates both principles into the converged licensing framework, providing that “a licensee is authorized to provide any electronic communication service” (i.e., service-neutrality) and allowing the licensee to “use any technology for the provision of electronic communication services” (i.e., technology-neutrality).

Together, technology and service neutrality recognize and facilitate technological convergence and promote new and innovative services and applications by reducing the number of licenses that an operator must obtain and expanding the variety and breadth of services an operator may provide. It may also contribute to reducing unnecessary or even contradictory regulatory obligations, such as different reporting standards and requirements provided under service-specific regimes. However, a country’s licensing regime often requires substantial reforms from traditional service-specific licensing to a more unified licensing framework capable of accommodating technology and service neutrality.
3.2.2 New Authorization Options and Their Implications for Broadband

In light of the regulatory implications that flow from convergence and the transition to a next generation network (NGN) environment, regulators have begun to adopt more unified frameworks based generally on one of the following approaches: 1) unified/general authorization or 2) multi-service authorization. Establishing some form of converged licensing framework that includes technology and service neutrality can be a key step for developing countries to foster the supply of broadband, increase investment and improve uptake of broadband.

Unified or general authorizations

In principle, these authorizations are technology- and service-neutral, allowing licensees to provide all forms of services under the umbrella of a single authorization and permitting them to use any type of communications infrastructure and technology capable of delivering the desired service (see Figure 3.1). This is the most flexible approach and it typically permits any number of operators to be authorized, except where scarce resources, such as spectrum, are involved. In addition, this type of framework may only require registration or notification in order to begin offering services. The general authorization regime established by the EU Authorization Directive in 2002, as amended in 2009, characterizes this type of framework. Under that regime, a provider may offer any type of electronic communications network and/or service with a simple notification to the relevant national regulator. No license application or approval process is generally required.

Figure 3.1. General Elements of a Unified and General Authorization Framework

Source: Telecommunications Management Group, Inc.

Multi-service authorizations

A multi-service licensing framework allows operators to offer a wide range of services under a single authorization and may also permit certain categories of licensees to use any type of communications infrastructure and technology capable of delivering the licensed services. However, the multi-service authorization framework is generally not as flexible or streamlined as a general authorization approach in a number of ways: 1) there are multiple license categories rather than a single license category; 2) the various license categories may limit the number and types of services that may be provided; 3) licensees may be required to hold multiple licenses; and 4) rules may bar licensees from holding more than one type of license, which may stifle convergence if, for example, a telecommunications licensee is not permitted to hold a broadcasting license and therefore cannot offer video services.

Singapore has adopted a simplified variation of the multi-service licensing framework, which is based on two main types of licenses: facilities-based operator (FBO) and services-based operator (SBO) (see Figure 3.2).
Figure 3.2. Example of Multi-Service Licensing Framework: Singapore

<table>
<thead>
<tr>
<th>Facilities-Based Operator License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full technology and service neutrality</td>
</tr>
<tr>
<td>Permits the provision of any type of network or service</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Services-Based Operator License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permits provision of a wide range, but ultimately limited, set of services</td>
</tr>
<tr>
<td>Must be non-facilities based and is not fully technology- or service-neutral</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SBO Individual License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application process is required for the stipulated types of operations and services</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SBO Class License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only registration is required before providing the stipulated types of services</td>
</tr>
</tbody>
</table>

3.3 Spectrum Management to Foster Broadband

In the past, as new technologies and services developed, legal and regulatory frameworks often evolved in a piece-meal fashion with regulators often charging different fees, using different assignment mechanisms and imposing different conditions on the various types of spectrum authorizations/licenses. However, these practices do not facilitate converged service offerings or maximize the value and use of spectrum since new technologies enable multiple services and applications to be provided over one network; allow multiple services to be provided using the same spectrum; and/or enable the spectrum to be used more efficiently and intensively.

As a result, policymakers and regulators are looking to replace narrowly defined technical and service rules with more flexible assignments that allow providers to best match their network and service. In today’s broadband environment, access to spectrum is particularly relevant, given the anticipated likelihood that for many countries, particularly developing ones, wireless will be the primary vehicle for deploying broadband networks. For example, in Morocco, 3G mobile broadband connections surpassed ADSL wireline connections in September 2009 and represented over 76 percent of the total Internet connections in the country at March 2011.\(^{168}\) As a result of this trend, regulatory authorities and policymakers in many countries are looking at legal and regulatory reforms are necessary to facilitate the supply of wireless broadband services and the build-out of networks. Such policies include spectrum allocation and licensing, license terms and conditions (e.g., coverage obligations), license renewals, and procedures to reclaim and reuse spectrum (e.g., the transition from analogue to digital television).

3.3.1 Spectrum Licensing Regimes

The process for licensing spectrum use typically depends on a country’s general licensing regime for electronic communications services. The traditional approach that developed in many countries was to issue a service-specific license to cover both the network/service and the spectrum in a single document. For instance, prior to adoption of the Unified Access Service License in India, the cellular license was one of 12 service-specific licenses under the traditional framework.\(^ {169}\) As is typical under a traditional licensing framework, tying the network, service and spectrum license together may limit or eliminate the ability for licensees and consumers to capture the benefits of convergence.

More recently, converged licensing frameworks have developed that generally involve two authorizations: one covering the networks and services to be provided and another for the spectrum.\(^ {170}\) Additionally, the network/service and spectrum licenses may be issued separately. If issued separately,
the licenses to provide networks and services should be granted or registered simultaneously with the spectrum licenses to ensure regulatory certainty.

Regardless of the initial procedures for issuing spectrum licenses, spectrum licensing regimes for commercial services should be as flexible as possible, since limiting the flexibility of spectrum licenses can diminish the value of the broadband service and ultimately undermine the service provider’s investment incentives. Regulators can introduce flexibility through rules that are technology- and service-neutral, allocating certain frequency bands for unlicensed or license-exempt use and using market-based assignment mechanisms, including spectrum trading.

3.3.2 Flexible-Use Technical and Service Rules
A key tool for promoting wireless broadband development is for governments to allow flexible use of spectrum, particularly through technical and service rules that enable wireless providers to offer any type of broadband service or application, including voice, video, and data. Flexible-use rules may be applied to both current and future commercial assignments to maximize the benefits of technological evolution and development of advanced services. For example, the EU’s 1987 GSM Directive reserved the 900 MHz band (890-915 MHz/935-960 MHz) for GSM networks and services only; however, this was revised in 2009 to permit greater flexibility in choice of technology and encourage the growth of mobile broadband in this band.

When considering adopting flexible-use rules for existing licenses, however, regulators should evaluate the potential competitive implications of such liberalization and the possible safeguards that would need to be put in place to address them. This includes determining whether this policy would place certain providers at a competitive advantage vis-à-vis their rivals, or if operators should be allowed to retain all or part of the liberalized spectrum. In case existing providers are allowed to retain the spectrum, the regulator should consider the possible mechanisms to control for potential windfalls (e.g., regulatory obligations and fees). If some spectrum is to be released back into the market, the regulator should also consider the manner and timetable in which the assignment of such spectrum will take place. Regulators will also need to address the impact that flexible-use rules for broadband spectrum licensing will have on processes in their pipeline, including the possibility of assigning various spectrum bands in a single process or the adoption of caps to facilitate new entry or so that an operator may obtain an even blend of spectrum across different bands.

Cognitive radio technologies (CRT) are also expected to lead to a significant increase in the flexible use of the spectrum. A cognitive radio is able to sense and understand its local radio environment to identify temporarily vacant spectrum to operate in. At present, most attention relating to CRT is placed on opportunistic or unlicensed use (i.e., identifying “unused” portions of spectrum to dynamically share the spectrum with existing users), but it is expected that in the future licensed operators may use CRTs to improve the management of their spectrum assignments. This represents significant opportunities to optimize the use of the spectrum for the provision of bandwidth intensive wireless broadband services and applications.

3.3.3 Spectrum Allocation and Assignment
As the deployment and adoption of wireless broadband increases, additional spectrum is widely expected to be needed to accommodate the demand of bandwidth-hungry broadband services, including video and data. For example, the average smartphone user generated ten times the amount of traffic as the average non-smartphone user between 2009 and 2010. And the number of smartphone users is expected to grow substantially—it is anticipated that most people in the world will use mobile devices as their primary connection to the Internet by 2020.
Beyond introducing converged, flexible licensing frameworks, countries are also looking at the way 1) spectrum bands are planned and harmonized and 2) spectrum blocks are configured, assigned and transferred. Wherever possible, a key initial step in promoting commercial wireless broadband networks and services is for regulatory authorities to adopt internationally harmonized band plans when considering the allocation and assignment of spectrum. This approach facilitates commercial launch of broadband services by allowing providers to take advantage of scale economies in network equipment and devices, thus reducing the costs of deployment and, ultimately, the prices for consumers. International harmonization also facilitates the ability to offer roaming services.

Wireless broadband also requires additional bandwidth to be made available to keep pace with the high data rates needed to support bandwidth-hungry services and application, such as video. The specific amount of spectrum will vary by country depending on the current assignments and the expected growth in the demand for data services and traffic. Nevertheless, to deliver new data-intensive services and applications in a technically efficient and cost-effective manner, and at the desired level of quality, providers will need to obtain additional spectrum at some point. This is especially the case in large, densely populated urban areas in both developed and developing countries. For example, the U.S. National Broadband Plan seeks to make 500 MHz of spectrum available for broadband use by 2020, of which 300 MHz between 225 MHz and 3.7 GHz should be made available by 2015. In addition, the size of the spectrum blocks awarded to licensees may need to be revisited. For example, scalable, new International Mobile Telecommunications-Advanced (IMT-Advanced) technologies are best suited for wider blocks of contiguous spectrum, ranging from 2x15 or 2x20 MHz in paired spectrum and a minimum of 20 MHz for unpaired spectrum. Therefore, regulators are increasingly designating larger spectrum blocks for the provision of wireless broadband services. Recent assignments for IMT in countries such as Brazil, Chile, Costa Rica, Colombia, Denmark, the Netherlands, Norway, and Mexico highlight this approach.

Also relevant is the method of awarding spectrum chosen by the relevant authority. Increasingly, countries are using market mechanisms to initially assign spectrum use rights, particularly through auctions. Competitive award methods are generally viewed as more open, non-discriminatory and transparent than other assignment processes, such as administrative proceedings, as well as provide an opportunity for new entrants. Auctions are also more economically efficient since those willing to pay the highest price most value the spectrum while the winning bids provide additional revenues to governments. For example, India’s 2010 auction of 3G spectrum garnered over USD 14.5 billion for the government.

Spectrum trading (also known as “secondary markets”) is another policy that facilitates aggregation of spectrum to meet future data traffic demand requirements by permitting existing licensees to transfer all or a part of their spectrum assignments to third parties with little or no government involvement in the process. Implemented in Australia, New Zealand and the United States, spectrum trading has allowed late entrants to the mobile market to obtain spectrum rights, which can reduce constraints on new entrants in terms of timing of their market entry. In the absence of spectrum trading, potential entrants and existing operators seeking to further build out their networks must wait for the government to formally award new spectrum assignments. Ultimately, spectrum trading provides the opportunity for secondary markets to emerge that can improve the rollout of new services, increase the potential for competitive service provision, and encourage investments in the sector.

Although placing greater emphasis on market forces and spectrum trading offers many advantages over the traditional models of spectrum management, ineffective regulatory environments may allow incumbent or dominant operators to control key, high-value spectrum bands. This could result in
spectrum hoarding and/or concentration of the wireless broadband market. As such, there is a trade-off between operators having sufficient spectrum versus monopolizing the available spectrum. Many countries seek to mitigate this through build-out obligations while others impose spectrum caps or set aside spectrum blocks to new entrants. However, at least one study argues that spectrum caps in Latin America actually hinder the development of mobile broadband. Overall, making as much spectrum available as possible through transparent and non-discriminatory is a key step towards ensuring that operators are able to meet future wireless broadband demands.

3.3.4 Spectrum License Renewal

As spectrum licenses granted in the 1990s and early 2000s reach the end of their initial terms, license renewal policies will become an increasingly relevant regulatory issue to foster investment in wireless broadband. In establishing renewal policies, policymakers and regulators should strive to promote investors’ confidence and provide incentives for long-term investment while preserving the flexibility of the regulatory process to accommodate market and policy developments. Legal certainty is of utmost importance to create an environment conducive to investment and the technological upgrades required to deploy wireless broadband services.

Principle and procedure for renewal

While legal regimes vary, most frameworks have adopted a system based on the “presumption of renewal” or “renewal expectancy.” Under a presumption of renewal, the licensing authority must renew a license as long as the licensee has fulfilled its obligations and has not violated the law or the terms of its license. In general, renewal expectancy provisions seek to provide regulators with the flexibility to review and adjust license conditions in response to technological developments and market conditions, while providing the regulatory certainty necessary for licensees to continue investments. In Canada, for example, the licensing framework provides a high expectation of renewal unless a breach of license condition has occurred, a fundamental reallocation of spectrum to a new service is required or an overriding policy need arises. Similarly, in Antigua and Barbuda, there is a renewal expectancy for the same period as the original license and a requirement that the regulator provide 180 days written notice of its intention not to renew. An appeals process to the regulator is also established.

Other countries rely on automatic renewals. For example, Portugal’s Decree-Law no. 151-A/2000, regarding the use of radiocommunications, automatically renewed licenses every five years unless the regulator provides at least 60 days written notice to the licensee stating the reasons for non-renewal. In the Dominican Republic, automatic renewal is warranted in the absence of a negative finding from the regulator. Some countries, such as Australia, provide less long-term certainty to incumbents, opting instead for a legal presumption that when a spectrum license expires, the license will be re-assigned via a price-based method (e.g., auction), unless it is in the public interest to do otherwise.

Change in license conditions and review of license fees

Renewal expectation, however, does not necessarily imply that licenses will be renewed under the same terms as the original license. In setting the terms and conditions of license renewal, regulators must strike the right balance between giving certainty to operators and investors and ensuring license conditions reflect current policy objectives, respond to technological and market developments and consider consumer’s needs. If an appropriate balance is not struck, proposed changes to licenses, and the review of associated fees in particular, can become highly controversial.

For example, France’s regulator, ARCEP, initiated a public consultation in 2003 on the renewal of GSM licenses, which were set to expire in 2006 and 2009. ARCEP originally announced that it would charge
a five percent progressive tax on annual turnover, but licensees protested that this amount would harm investment and the development of services. The regulator issued its decision in March 2004 after comments from licensees demonstrated that the high annual fees would negatively impact investment and the market generally.185 Although the government set out new licensing fees, as well as higher coverage obligations and quality of service levels, the annual fees were substantially less onerous.186 The new fees required GSM licensees to pay EUR 25 million annually and one percent of annual turnover.187 A similar controversy surrounded the renewal process for mobile licenses in Bangladesh, where a proposal to extract large renewal fees from existing licensees and the imposition of additional obligations created significant opposition from service providers,188 apparently causing the government to abandon the idea.189

3.3.5 License-Exempt (Unlicensed) Spectrum

In an effort to provide maximum flexibility for innovation and lower entry costs for some types of ubiquitous wireless devices, policymakers and regulators in many countries have set aside certain bands exclusively for license-exempt (also known as unlicensed) uses. In other bands, license exempt devices and licensed services share frequencies. Many commonly used wireless devices, such as cordless phones, garage door openers and smart meters for water and gas metering, depend on unlicensed spectrum. In addition, municipal wireless networks also use unlicensed spectrum to create mesh networks that cover downtown areas or even entire cities.190

Wi-Fi is perhaps the most well-known and widespread example of unlicensed use. Many countries have opened the 2.4 and 5.8 GHz spectrum bands for unlicensed use, allowing for the tremendous growth of Wi-Fi devices. According to ABI Research, consumer devices with Wi-Fi functionality surpassed 770 million units in 2010, an increase of nearly 33 percent compared to 2009.191 Over half of all Wi-Fi devices are mobile handsets and laptop computers; however, a wide and expanding range of equipment is equipped with Wi-Fi, including cameras, fax machines and printers. Furthermore, in many countries there has been significant development of “Wi-Fi hotspots” in cafes, libraries, universities and other public areas where users can access the Internet for free or at low cost.

An important emerging use for Wi-Fi is as a complement to commercial wireless networks. As wireless broadband services spread, demand on mobile network capacity is increasing exponentially, putting significant strain on available resources. The combination of licensed and unlicensed spectrum usage—Wi-Fi in particular—is becoming a key complement of the wireless broadband experience, allowing users to offload their traffic from mobile operators’ networks in certain circumstances, reducing potential congestion, and enhancing broadband access.

Technical and service rules for unlicensed spectrum typically specify that unlicensed devices must operate at low power and may not cause harmful interference to a licensed user. In addition, unlicensed devices must generally accept interference from licensed users and other unlicensed devices. Although interference and economic issues may make it difficult or impossible to replace all spectrum licenses with unlicensed use, opening bands to unlicensed devices can support broadband development through the growth of new technologies, efficient spectrum use and the entry of new network, service, and applications providers.

3.3.6 Spectrum Refarming and the Digital Dividend

In order to maximize the ability to offer wireless broadband, particularly where spectrum is intensively used, many countries are engaging in spectrum refarming, whereby existing spectrum users are moved out of a band to allow for new broadband uses. The refarming process is often lengthy and costly since it typically involves negotiations with existing private and public spectrum holders and potential
licensees, and may also include compensation for the existing licensees to change spectrum bands. As such, it is important to conduct a thorough spectrum inventory prior to implementing a refarming process to identify unused or under-utilized spectrum, as well as heavily used bands. In many developing countries, refarming may be less necessary in the near future since available spectrum may be sufficient that can be more easily allocated for wireless broadband services.

One of the most promising and active areas of spectrum refarming is the result of the transition from analog to digital television. As countries around the world prepare for or complete the transition to digital terrestrial television (DTT), they are examining procedures for reallocating the spectrum that becomes available as broadcasters vacate the 700 MHz or 800 MHz bands, depending on the region. This freed-up spectrum, which is widely known as the “digital dividend,” offers excellent propagation characteristics for mobile broadband services by providing an ideal balance between transmission capacity and distance coverage.\(^{192}\) This means that the digital dividend spectrum is well-suited to provide mobile services to rural areas, as well as provide effective in-building performance in urban areas. For countries where rural coverage is an important policy goal, this is a notable advantage.

However, given the various timelines for the DTT transition (some countries have completed the transition while others are planning for the analog switch-off (ASO) between 2011 and 2020); many countries are only beginning to consider rules and timeframes for refarming digital dividend spectrum. Many countries are waiting to award digital dividend spectrum until after the ASO is completed and the spectrum is no longer encumbered by broadcasters. However, some countries, such as the United States, Colombia and Peru, have awarded or are planning to award the digital dividend ahead of their ASO dates. Regardless of the approach, there is considerable international and regional harmonization under way, including by the EU and the Asia-Pacific Telecommunity. Box 3.1 provides an overview of the DTT and digital dividend activities around the world.

Box 3.1. Summary of Digital TV Transition and Digital Dividend Activities around the World

- **Digital television transition timelines vary.** Developed and developing countries alike have been focusing on the digital TV transition and most have adopted ASO dates, or have at least set a goal for completing the transition by a certain year. While countries such as Germany, Finland, Luxembourg, Sweden, the Netherlands, and the United States have already completed the ASO, other countries appear to be focusing on 2015-2020 to complete their transitions.

- **Consideration of the digital dividend is slow.** There has generally been less progress made towards developing rules and timeframes for the award of digital dividend spectrum. While several consultations are expected to begin over the next two years, including Chile, Colombia, Ireland, Mexico and the United Kingdom, most countries have not established technical and service rules or award processes for the digital dividend spectrum, particularly in developing countries.

- **Approaches to assigning digital dividend spectrum vary.** Generally countries are waiting to award the digital dividend spectrum until after the ASO is completed and the spectrum is unencumbered by broadcasters. For example, Finland’s ASO in the 800 MHz band was in 2007, but licenses still have not been awarded. Some countries, however, are following the U.S. approach and are awarding 700 MHz spectrum ahead of the completion of the digital TV transition. Ireland is likely to auction its digital dividend spectrum in 2011, but licensees will probably not be permitted to use their new frequencies until the completion of the ASO in 2013. Colombia, Mexico and Peru are also looking at auctioning 700 MHz spectrum before the ASO date.

- **International and regional harmonization is underway.** There have been significant international and regional efforts to harmonize the digital dividend spectrum and develop common band plans.
The ITU’s 2007 World Radiocommunication Conference (WRC-07) identified spectrum in the 698-960 MHz band for IMT, and the ITU is currently finalizing a revision to ITU-R Recommendation M.1036-3, which identifies specific band plans for all bands, including the digital dividend, identified for use by IMT. Regionally, the European Union and the Asia-Pacific Telecommunity have agreed on common band plans for their member states (the two plans are not the same). To date, there are no formal common band plans for the Americas, Africa or the Middle East.

Source: Telecommunications Management Group, Inc.

3.4 IP-Based Interconnection

Interconnection of different networks is critical to ensure a competitive communications market. It is fundamental for service providers to ensure their users have the ability to connect with users of any other network or service provider. As the Internet expands, becomes more geographically ubiquitous and traffic increases, more efficient IP-based Internet interconnection will be required. This is especially relevant for developing countries, where lack of interconnection facilities means that Internet traffic originated there is mostly subject to “tromboning” (i.e., using international transit facilities to deliver local traffic). Policies to facilitate national and/or regional Internet Exchange Points (IXP), the physical infrastructure where ISPs exchange Internet traffic between their networks, will play a crucial role in ensuring more efficient and cost-effective Internet interconnection in these countries.

Similarly, as the transition towards IP-based NGNs moves forward, questions will arise regarding the manner and terms under which IP-based interconnection will take place between different types of networks and at different functional levels of the network. Especially relevant are issues relating to future wholesale charging mechanisms that may apply to converged broadband networks. The following sections address current trends and expected regulatory developments relating to these issues.

3.4.1 Internet Interconnection and IXPs in Developing Countries

Historically, the exchange of Internet traffic has been developed-countries centric. In the early years of the Internet, traffic was mainly routed and exchanged in the United States. As Internet access has expanded and the amount of content available has increased, the exchange of Internet traffic has been distributed to other developed countries in Europe and Asia through the creation of national and regional IXPs. In the case of developing countries, while IXPs have been progressively implemented and peering is occurring at the national level, there is still very little traffic that is exchanged within developing regions. Most of the traffic is still hauled out of the region for switching and then sent back into the region for delivery.

IXPs in developing countries are important for Internet interconnection for a number of reasons. By providing an interface for the exchange of local and regional traffic, IXPs facilitate a more efficient and cost-effective management of international bandwidth. Because of their small traffic volume, ISPs in developing countries mostly have to rely on transit agreements since the largest providers do not have incentives to enter into shared-cost peering agreements with them. Due to the charging mechanisms for international Internet transit, this means that the developing country ISP will ultimately bear the costs of outbound and inbound traffic. Local peering through IXPs at the national and/or regional level helps resolve this problem and reduces the costs of Internet access for consumers in developing countries.

More local interconnection, in turn, allows for the provision of more reliable services, with lower latency that then can support multiple innovative time-sensitive applications. For example, for African ISPs,
Tromboning has been estimated to add from 200 to 900 milliseconds to each transmission. This added latency can impede the development of new services, such as Internet telephony, streaming audio and video, video-conferencing, and telemedicine. By interconnecting at a local IXP, two ISPs (located near to each other) can overcome this problem and route traffic to each other’s networks in five to 20 milliseconds.195

As noted above, IXPs are now being implemented in some developing countries. Before 2002, there were only two IXPs in Africa, with this number increasing to 10 by 2003. By December 2010, there were 20 IXPs distributed among African countries.196 While this represents significant progress, the great majority of Internet traffic from Africa, around 85 percent, still continues to rely on connections to Europe; just one percent of the traffic being exchanged stays within the region.197

From a regulatory perspective, a series of barriers can hinder Internet interconnection and the establishment of IXPs in developing countries.198 As discussed in section 3.4.2 below, Internet interconnection has developed under market-based mechanisms and without the need for regulatory intervention. However, regulators’ attempts to extend their mandates to encompass Internet interconnection may result in unwarranted regulation and create disincentives for the deployment of IXPs. This includes, for example, legal restrictions that prohibit the deployment of non-regulated ICT facilities, such as IXPs. Unduly restrictive or burdensome licensing regimes may also limit the deployment of IXPs. Similarly, exclusive rights for the provision of international connectivity that some countries maintain can also impede efficient Internet interconnection.

In some cases, lack of appropriate regulation of the inputs required to implement effective IXPs, such as national backbone connectivity, may result in above-cost rates for wholesale services. For example, high leased lines costs can significantly affect an IXP’s viability. In addition, deficiencies in regional broadband connectivity also play a role in the continued low levels of intra-regional Internet traffic exchanged in developing regions, like Africa.199 Lack of relevant local content also affects the extent to which traffic is peered within national/regional IXPs.

Box 3.2 presents a case study of the implementation of the first IXP in Kenya (KIXP), which illustrates some of the legal and regulatory difficulties outlined above and how they were overcome.

Box 3.2. Kenya IXP (KIXP): Challenges and successes of implementation of an IXP

Prior to the KIXP, all Internet traffic in Kenya was exchanged internationally and about 30 percent of upstream traffic was to a domestic destination. In early 2000, the Telecommunications Service Providers Association (TESPOK), a non-profit ISP group, undertook an initiative to implement and operate a neutral, non-profit IXP for its six members, launching the KIXP in Nairobi in November 2000. Almost immediately, Telkom Kenya filed a complaint with the Communications Commission of Kenya (CCK) arguing that the KIXP violated its monopoly on the carriage of international traffic. Within two weeks, the CCK concluded that the KIXP violated its monopoly on the carriage of international traffic. Within two weeks, the CCK concluded that the KIXP required a license and ordered it to be shut down as an illegal telecommunications facility.

After intensive efforts, CCK granted TESPOK an IXP license in November 2001. In February 2002, the KIXP went live again and was re-launched that April with five ISPs actively exchanging traffic. Within the first two weeks, latency was reduced from an average of 1200-2000 milliseconds (via satellite) to 60-80 milliseconds (via KIXP). Monthly bandwidth costs for a 64 kbit/s circuit dropped from USD 3,375 to USD 200, and for a 512 kbit/s circuit from USD 9,546 to USD 650.

Currently, the KIXC has 31 members peering traffic, some of which are not ISPs, like UNON, National Bank, and the Kenya Revenue Authority. TESPOK launched a second IXP in Mombasa in August 2010 to further facilitate local peering. While the throughput of traffic exchanged at the KIXP is low relative to
major IXPs (at around 100 Mbit/s), KIXP ranks among the top 15 IXPs in terms of growth (around 150 percent year-on-year increase in recent years).

3.4.2 IP-Based Interconnection: Wholesale Charging Arrangements

Despite the increasing physical and logical integration between legacy public switched telephone networks (PSTNs), public land mobile networks (PLMNs) and all-IP Internet networks, two separate models are still typically used for exchanging traffic in these networks. Internet traffic is exchanged using IP-based interconnection and relies on privately negotiated peering and transit agreements. PSTN/PLMN traffic, however, may be exchanged using a combination of switched and IP-based interconnection, but is normally subject to regulation and typically falls within two main wholesale charging arrangements Calling Party Network Pays (CPNP) and Bill and Keep (BAK).

As convergence towards NGNs advances, these differences create potential arbitrage opportunities between regulated and unregulated services and lead to potential competitive distortions. Regulatory authorities are therefore considering what reforms in wholesale charging mechanisms, if any, should be implemented at the national level for termination services to further enable IP-based services and broadband. While no definitive answer exists at this time as to the wholesale charging arrangements that will prevail, some authorities are expecting that a uniform wholesale charging mechanism for IP-based interconnection may emerge in the future.

3.4.3 Current Wholesale Charging Arrangements

In the case of PSTN/PLMN interconnection, the majority of countries around the world use CPNP for PSTN/PLMN interconnection at the wholesale level. Under this system, the originating network is required to pay a charge, generally on a per-minute or per-second basis, to the terminating network for the traffic exchanged. An alternative approach is BAK, which is used for PLMN in countries such as the United States, Singapore and Canada, and is a system where interconnecting operators generally do not charge each other for terminating calls. These terms are equivalent to negotiating termination rates equal to zero, and typically include reciprocity obligations, meaning that the same terms are applicable to both parties to the agreement. Under BAK, the costs associated with call termination may in some cases be recovered from the service provider’s own subscribers as that provider sees fit, for instance by levying a charge for calls received.

Efficient IP-based interconnection in the Internet has been achieved for the most part without the need for regulatory intervention. Since no single entity has the ability to connect to all the networks that form the worldwide Internet, a series of indirect interconnection (transit) and direct interconnection (peering) arrangements have developed to ensure that traffic will reach its intended destination. In Internet interconnection, the combined framework of transit and peering, together with the IP packet routing protocols, remove the a priori case for regulation based on the termination monopoly present in PSTN/PLMN interconnection under CPNP systems. For example, if an ISP (ISP A) denies direct interconnection (peering) to another ISP (ISP B), the latter ISP is generally capable of accessing customers of ISP A, although at different costs, as long as ISP B has an indirect (transit) agreement with a third party. This same result is not generally possible in the circuit switched environment. If the PSTN/PLMN provider refuses interconnection, competitors could generally not terminate calls to its subscribers.
3.4.4 Future Charging Mechanisms

In the long run, the differences in interconnection charging arrangements described above will not likely be sustainable or efficient in a converged NGN environment where more traffic will be IP-based. Price differences between regulated and unregulated interconnection services result in arbitrage opportunities and potential market distortions. Therefore, some consider a uniform wholesale charging system may be needed going forward for future NGN interconnection. This could be based on the Internet economic model on the PSTN/PLMN model, or some third option resulting from a combination of both. Others emphasize that although NGNs and the Internet use IP as a common technology and are converging in the marketplace by offering similar or substitute services, they are organized differently and so remain separate and distinct, even though they share the same transmission infrastructure (such as fiber networks). Consequently, it is argued that the two types of networks will not converge since the Internet is a collection of “open networks” and NGNs are a collection of “closed” networks (i.e., packets cannot be allowed across the interconnection point unless they are authorized), and hence there is no convergence-based argument in favor of uniform charging system for NGNs based on BAK.

Despite this, there are some early indications that future wholesale price mechanisms may resemble IP network pricing, that is, PSTN/PLMN per minute or per second pricing may migrate to pricing based on barter arrangements (e.g., BAK) and/or on capacity-based interconnection (CBI). A recent attempt to lead regulation in the other direction (i.e., regulating the terms, conditions and prices for Internet peering and transit services using tools similar to those applied to PSTN/PLMN) by the Polish regulatory authority met with significant opposition from the European Commission, and was eventually discarded in March 2010.

Similarly, the Body of European Regulators of Electronic Communications (BEREC) has recently put forth proposals for a single terminating charging mechanism, specifically a shift towards BAK, which it believes will benefit networks in a converged, multi-service, NGN IP-based environment. If implemented in the future, this approach would result in wholesale arrangements similar to those used under Internet peering agreements. In the United States, the National Broadband Plan provides for the FCC to adopt a framework for long-term interconnection reform that creates a glide path to eliminate per-minute interconnection charges, while providing carriers an opportunity for adequate cost recovery, and establishing interim solutions to address arbitrage. Pursuant to this mandate, in 2011 the FCC began consulting on a major overhaul of the interconnection regime in the United States, noting the need to move away from per minute charges which “are inconsistent with peering and transport arrangements for IP networks, where traffic is not measured in minutes.”

As policymakers consider ways to reform the interconnection regime to enable broadband development, one of the issues to consider is that termination rates have traditionally been a significant revenue source for PSTN/PLMN operators in many countries. This is especially relevant for developing countries in the case of international voice traffic, where incoming calls significantly exceed outgoing calls. Where termination is a major source of revenue, providers may have the incentive and ability to advocate for maintaining wholesale termination arrangements subject to the current switched model (or some variation similar to the current model), notwithstanding the fact that the underlying technical and market drivers will likely have changed. If call termination rates remain high, it is even possible that many PLMN and some PSTN operators may have incentives to choose not to evolve their networks to IP-based interconnection. This could have a detrimental impact on the development of converged broadband networks.
However, two factors may favor the transition towards NGNs and IP-based interconnection. First, as networks converge towards NGNs and data services become increasingly dominant, the per-minute costs for voice services are expected to fall. Second, the ongoing worldwide trend towards regulating termination rates to reflect the underlying incremental costs of termination, especially for PLMN operators, has resulted in a significant reduction of termination rates in many countries. For example, recent regulatory proceedings in countries such as Colombia, Kenya, Mexico and Nigeria have reduced rates set at levels comparable to those prevalent in the EU. As noted by BEREC, “the lower the costs per minute and the closer they are to zero, the less difference between CPNP and BAK.” This may also facilitate a transition to IP-based interconnection in many countries.

3.5 Access to Infrastructure

3.5.1 The Regulation versus Investment Debate

In designing policies to foster long-term, facilities-based competition, regulators are tasked with balancing the objective of promoting competition and entry with the need to maintain incentives for investment in new infrastructure and innovation. This entails identifying facilities that are not easily duplicated (i.e., bottlenecks) and determining if they are capable of affecting competition in downstream (i.e., services) markets. Such a determination would call for the regulation of such bottlenecks to give access to competitors on a non-discriminatory basis and at cost-based prices, as fostering their duplication would either deter entry or result in a socially wasteful expenditure of resources. The success of such policies ultimately tends to pivot on the regulated prices and terms of access to bottlenecks.

In the absence of functioning market mechanisms, getting access prices just right is a huge challenge for regulators, and will impact the incentives of both new entrants and incumbents. If prices are too low, entrants will have no incentive to invest in their own infrastructure, even when it is economically viable and efficient for them to do so. If access prices are set too high, competitors will either not enter the market or choose to deploy their own networks, resulting in inefficient duplication of networks. Conversely, incumbents may refrain from future investment in their networks if their facilities are open to competitors at low rates, as any advantage derived from these investments would be available to rivals while risks associated with such investment would be exclusively borne by the incumbent.

3.5.2 Regulating Bottlenecks in the Broadband Supply Chain

Supplying broadband services involves a combination of network elements, processing and business services that can be thought of as the broadband supply chain. More fully described in section 5.2.1, this supply chain can be divided into four main components: (i) international connectivity, (ii) domestic backbone, (iii) metropolitan connectivity and (iv) local connectivity. Bottlenecks in any of the links of the chain will negatively impact competition and the development of broadband. Hence, effective regulatory frameworks must identify and address such instances of market failure on a timely and effective manner.

International Connectivity

As electronic communications traffic enters and leaves a country, and particularly Internet traffic, it is typically routed through one or more international facilities, including submarine cables, cable landing stations and international gateways. Since international facilities provide the entry and exit point for voice, data, video and other broadband services, they can become bottlenecks if access and traffic are restricted or prices are set above costs.
As the adoption of broadband services and applications increases, demand for international bandwidth also rises. Between 2002 and 2009, international bandwidth usage increased by 60 percent per year, with the strongest demand growth taking place on links to Africa, Latin America, and Middle Eastern countries, which experienced annual growth rates of over 74 percent during this period. The most efficient way to lower costs and keep pace with demand is through liberalization and promotion of competition among facilities that provide international connectivity, in particular international gateways, submarine cables, and landing stations. As such, it is important to ensure that there is more than one international carrier and international gateway, and where possible, redundant international cables and other facilities linking a country to competitive global communication networks. For example, Nigeria supported facilities-based competition in the international connectivity market through the introduction of a unified access service license in 2006, which allowed licensees to “construct, maintain, operate and use an international gateway” and networks consisting of any type of technology, including wireless or wireline systems. While it could be argued that the Nigerian Communications Commission’s (NCC) hands-off approach led to a long period of monopoly control by the incumbent provider, NITEL, over the only submarine cable landing in Nigeria, NCC recently found a highly competitive market with multiple cable systems is developing (see Box 3.3).

Box 3.3. Nigeria: Competition Analysis in the International Internet Connectivity Market

In its 2010 review of competition in the international Internet connectivity market, NCC found this market was sufficiently competitive on a forward-looking basis and therefore did not require *ex ante* regulatory intervention. This determination was based on an expected increase in facilities-based competition by 2012, stemming from the landing of four additional submarine cables, one of which is to be operated on an open access basis.

In its analysis, NCC recognized that for the better part of the last decade the market had been dominated by NITEL, which since 2011 was the monopoly operator of Nigeria’s only submarine cable, the South Atlantic 3/West Africa Submarine Cable (SAT-3/WASC). During this time, competing providers only added limited extra capacity of their own, mostly via satellite links and limited terrestrial links. At the time of the market analysis, four new submarine cables were scheduled to commence service in Nigeria, two in 2010 (Globacom-1 and Main One) and two more within the next two years (the West Africa Cable System in 2011 and the Africa Coast to Europe in 2012). NCC noted that the new cables would result in a 33-fold increase in Nigeria’s international bandwidth and significantly change the competitive dynamics in the market. As a result, NCC concluded that any market power NITEL may have been able to exercise in the past should be resolved by competitive entry.

Source: Telecommunications Management Group, Inc.

Facilities-based competition in the international connectivity markets may not be feasible in all developing countries, especially those that generate small amounts of traffic. Also landlocked countries or isolated Small Island Developing States (SIDS) may not have access to submarine cables and may have to rely on the use of alternative technologies, such as satellites that often carry a higher price premium.

For countries without a well-functioning international connectivity market, targeted *ex ante* regulation may be required to address market failure. Some countries, such as India, Colombia and Singapore, have adopted various obligations on international gateways, landing stations and submarine cable systems. In Colombia, for example, after conducting a review of wholesale inputs for broadband Internet access, the regulator found that cable landing stations constituted essential facilities and required landing station operators to provide access to their facilities on non-discriminatory terms and to publish a reference access offer.
Self-regulation can also be a tool for reducing costs and increasing access to facilities required for international connectivity. Consortium agreements for submarine cable systems, for example, are progressively including non-discrimination and open access clauses whereby third parties are guaranteed access to facilities and capacity at comparable terms to those offered to the facilities’ owners or subsidiaries. For instance, the Eastern African Submarine Cable System (EASSy), which runs from South Africa to Sudan with connections to all countries along its route, includes such safeguards. Launched in 2010, EASSy allows any consortium member to sell capacity in any market in the region to licensed operators on non-discriminatory terms and conditions.

Domestic Backbone

Comprising the second level of the network element supply chain, a country’s high capacity domestic backbone network is essential for broadband connectivity since it provides the link from international gateways to local markets, as well as domestic connectivity between major cities and towns. However, backbone networks require extensive investments. A major impediment to reducing these costs, particularly in many developing countries, relates to vertical integration in which the backbone network providers are vertically integrated with the local access network operators. This results in a single end-to-end provider that can wield great market power. As such, other service providers may not have access to the backbone or face high costs for interconnecting, a problem addressed in growing debates on open network access.

From a regulatory perspective, the first step towards facilitating competition in vertically integrated networks is to ensure a liberalized market. In some countries in Sub-Saharan Africa, for example, mobile operators are prohibited from using the incumbent’s network for backbone services, resulting in slow growth in broadband infrastructure. The second step towards increasing competition may entail targeted, *ex ante* regulations requiring the backbone network provider to offer network capacity on a wholesale, open access, and non-discriminatory basis to downstream providers. Alternatively, some countries are setting up national backbone operators that only provide wholesale broadband services on an open access basis in order to prevent any vertical integration. This scheme is being implemented or proposed in countries such as Australia, Brazil, Colombia, Singapore and South Africa. It should be noted, however, that public financing of national backbones should not crowd out private investment or distort competition. Moreover, where a public subsidy is provided to a backbone broadband network, open access obligations should be imposed.

Cross-sector coordination is also relevant to efficiently deploy national connectivity. Fiber optic networks are usually built along existing infrastructure networks such as roads, railways, pipelines, or electricity transmission lines. Most of the cost of constructing fiber-optic cable networks along these alternative infrastructure networks lies in the civil works. These costs represent a major fixed and sunk investment, increasing the risks faced by the networks operators. By lowering the cost of access to these infrastructure networks and reducing the risk associated with it, governments can significantly increase incentives for private investment into backbone networks. One way to reduce costs is to make rights-of-way readily available to network developers by simplifying the legal process and limiting the fees that can be charged by local authorities. Additionally, governments can provide direct access to existing infrastructure that they own/control. For example, a railway company could partner with one or more operators to build fiber optic cable network along the railway lines. In January 2011, for example, Serbian Railways and PTT Srbija agreed to jointly construct telecommunications infrastructure along Serbian Railway’s corridors, totaling 2,031 km. The United States, for example, has had a policy since 2004 that assists telecommunications providers seeking access to rights-of-way on federal lands.
Metropolitan connectivity

Metropolitan connectivity, also referred to as the “middle mile” or “backhaul” infrastructure, connects towns to the backbone infrastructure or remote wireless base stations to the operators core network. Competitive and well-functioning wholesale markets for backhaul capacity (e.g., leased lines) are a critical component for broadband diffusion and adoption. Developing countries are beginning to focus on core backbone and backhaul networks as a means to increase broadband deployment. For example, South Africa established a state-owned fiber-based infrastructure provider, Broadband Infraco, to provide national backhaul connections on a wholesale basis. Brazil has also begun focusing on backhaul by entering into an agreement with five wireline operators to build out broadband backhaul networks to 3,439 unserved municipalities in exchange for being relieved of existing obligations to install 8,000 dial-up equipped telecenters.

Particularly for rural and remote areas, wireless technologies may be the most practical solution for high-capacity backhaul for mobile broadband. A study from ABI Research noted that the global revenues from wireless backhaul leasing are expected to increase fivefold between 2009 and 2014 as operators upgrade to Long Term Evolution (LTE) and traffic demands on mobile networks rise. Recognizing the importance of backhaul for mobile broadband in India, the Telecommunications Regulatory of India (TRAI) recommended to the Ministry of Communications that license conditions should be amended in order to allow service providers to share their backhaul links from Base Transceiver Stations (BTS) to Base Station Controllers (BSC), noting that such sharing should be permitted via wireless and optical fiber links. TRAI maintained that, particularly where traffic from BTS to BSC is low in rural and remote areas, backhaul sharing would boost coverage, reduce maintenance efforts, and lower costs.

Local Connectivity

Local access networks, also called the “last mile,” refer to the links between the local switch and the consumer. This last link in the broadband supply chain has garnered much attention in recent years as countries seek to expand service into unserved or underserved areas and promote competition between operators at the retail level. Unlike other parts of the supply chain, local access regulation can be divided into two distinct areas of policy based on technology: wireline and wireless. Although the goals of policymakers are the same in each case—expand network availability and promote competition—the approaches must be tailored to the unique opportunities and constraints entailed in each technology.

Wireline Networks

The local access segment (the “local loop”) of the wireline network has historically been built and controlled by the incumbent provider of the PSTN. For many years, it was assumed the local loop services were a “natural monopoly” because they tend to be the most difficult and costly part of the network for alternative operators to replicate. However, as cable networks and commercial wireless services began competing with traditional telecommunications operators, policymakers began reexamining the possibility of facilities-based competition or otherwise promoting service-based competition in the local loop. The degree and extent of regulatory intervention in access networks, particularly on the wireline side, depends on the legacy endowment of infrastructure of each country. In more developed markets, regulation has ranged from a light-touch approach to more extensive restrictions and obligations, such as local loop unbundling (LLU, see section 5.7.3 for a technical description of how LLU works). However, in developing countries without significant wireline (broadband) infrastructure at the local level, such obligations may have limited impact.
LLU obligations require the incumbent to provide access to exchanges and the physical local loop network so that new market entrants can offer services directly to customers without having to reproduce the incumbent’s network. LLU may be used as a surrogate for infrastructure competition or as a way of inducing price competition between facilities- and services-based competitors. The main advantage of LLU is that it permits much faster market entry than would be possible if entrants were obliged to construct their own networks. The main disadvantage is that it can be a disincentive to fresh infrastructure investment by the incumbent operator (for instance, in deployment of a fiber optic network), especially in developing countries where the local loop is not yet fully built out.

LLU has been widely implemented in Europe where it was initially required by a regulation of the European Commission in 2000. It has been credited with stimulating intra-modal competition in some countries. Many other countries around the world have also adopted LLU obligations, including Japan, Korea (Rep.), Nigeria, Norway, Saudi Arabia, South Africa and Turkey. LLU has been mainly applied to wireline telephone networks for DSL services, although in theory it could also be applied to other wireline broadband technologies such as cable modem and FTTP. Several countries, including Netherlands, Sweden, and Slovenia, have proposed or implemented fiber unbundling policies.

LLU has not been widely implemented in developing countries. One reason is that there is generally a much lower base of installed wireline telephone lines compared to developed nations. Considering the limited regulatory resources in some developing nations, efforts might be better spent in encouraging full, open, and technology-neutral infrastructure competition, particularly in wholesale markets, rather than devoting scarce resources to LLU when there are only a limited number of loops to unbundle.

Wireless networks

Commercial wireless networks have been an important local access technology for more than a decade and have become the predominant means of providing local access to voice and now broadband services in many developing countries. Wireless networks can help overcome the last mile wireline bottleneck by giving consumers multiple options for broadband access. For governments seeking to promote greater broadband connectivity specifically, wireless offers some notable advantages, such as a lower cost structure in rural areas and faster roll out since it is easier to deploy a series of cell towers rather than connect each household with a physical wire. With the introduction of 3G and 4G technologies, wireless networks are expected to compete directly against, and be substitutes for, wireline broadband within the next decade. In Austria, for example, the regulator (RTR) determined in 2009 that DSL, cable modem, and mobile broadband connections for residential consumers are substitutes at the retail level. The range of policy options and regulatory changes that could be made to improve wireless broadband development is set forth below.

- **Allocate additional spectrum:** To support the expected increase in demand for advanced services requiring faster download speeds and the greater use of such services, regulators are implementing policies that promote the most efficient and effective use of spectrum resources, including freeing up spectrum bands that are either unused or underutilized.

- **Flexible allocations:** Another major tool for promoting wireless broadband development is for governments to allow flexible use of spectrum so as not to constrain technology and/or service developments. This will help providers best meet the rapidly changing demands of their customers.

- **Technology neutrality:** Technology neutrality refers to the concept that operators should be allowed to use whatever technology or equipment standard they wish to meet market demands. Thus, rather than regulators mandating that a specific technology must be used in a
certain band, operators are allowed to choose whatever technology they wish, subject to technical limitations to prevent interference, for example.

- **Service neutrality:** With the transition to digital technology and better processing capabilities, advanced systems are now capable of transmitting all kinds of services. Thus, wireless operators can now provide voice, high-speed data services and video over their networks. Government regulators should modify service and licensing terms to allow operators to realize the benefits of this flexibility.

- **Greater use of market mechanisms:** The move to market mechanisms has been seen in two important trends: assigning spectrum to operators using some sort of competitive mechanism (e.g., auctions), and charging market-based prices for acquiring or using spectrum. Having a competitive, transparent means of assignment can also give service providers greater access to spectrum. In conjunction with a regime that allows flexible use of spectrum, such competitive assignment enables new models of service provision.

- **Spectrum trading:** Once spectrum has been assigned, spectrum trading (secondary market license transfers) allows later entrants to a market to access spectrum by paying a market price for it. This improves competition by allowing companies who want (new or additional) spectrum to acquire it from those who may have excess spectrum in specific areas.

- **Mobile Virtual Network Operators (MVNOs):** Another way to introduce additional competition into the market may be by governments permitting MVNOs to contract with existing mobile carriers to gain access to capacity and network services that the MVNO then uses to establish its own services and brand. The MVNO model, however, has not been universally successful as their impact appears to depend on the specifics of a country’s mobile market structure.

- **Coverage obligations:** Governments can promote wireless broadband availability by establishing coverage obligations at the time of initial licensing. License requirements tied to coverage obligations, however, must be carefully considered. Requirements that are too easy to meet run the risk of not significantly expanding broadband coverage. Conversely, overly strict requirements are unlikely to be met and could result in either no interest in a license or lower payments.

3.5.3 Infrastructure Sharing

As governments seek ways to expand broadband networks and promote competition in broadband services, they inevitably encounter difficulties. In some areas, low population densities may make it unlikely that the market will support multiple competing wireline or wireless infrastructures. In addition, for some buildings in urban areas, there may not be sufficient physical space to run multiple sets of fiber or copper cables to each potential user or to place wireless towers and other equipment. In such cases, policymakers and regulators have begun to encourage—or even require—parties to share the physical infrastructure used to deliver broadband services.

There are generally two types of infrastructure sharing being considered today. “Passive” sharing includes common use of support structures such as towers, masts, ducts, conduits, trenches, manholes, street pedestals, and dark fiber. “Active” sharing involves electronics, switching, power supplies, and air conditioning, among other elements. Infrastructure sharing can take many forms, with the most common being collocation (the sharing of physical space in buildings), tower and radio access network (RAN) sharing, access to dark fiber for backhaul and backbone networks and physical infrastructure sharing (ducts and conduits).
Infrastructure sharing is rapidly becoming an important means of promoting universal access to networks and offering affordable broadband services by reducing capital expenditures and ongoing operating expenses associated with the rollout and operation of networks. In recent years, there has been a noticeable trend of voluntary sharing of active and passive network facilities around the world, especially in the mobile sector. A push to upgrade and expand networks for mobile broadband is resulting in service providers searching for ways to cut costs and raise capital. For example, service providers may create joint ventures that either manage the combined infrastructure assets for shared use by its owners or on an open access basis. This allows for network optimization and avoidance of or decommissioning of redundant sites, leading to significant cost reductions for the parties involved. The joint venture in the United Kingdom between Hutchison 3G and T-Mobile, now joined by Orange after its merger with T-Mobile in the United Kingdom, and the pan-European agreement between O2 and Vodafone to share infrastructure in Germany, Spain, Ireland and the United Kingdom highlight this approach towards increased voluntary sharing in the sector.

The trend of sharing mobile infrastructure also extends to developing countries. In India, for example, the regulator, TRAI, proposed sharing rules for the mobile sector in 2007, both for active and passive components. Since then, Bharti Group, Vodafone Group and Aditya Birla Telecom (Idea Cellular) have created Indus Tower, a joint venture that controls over 100,000 towers and provides passive infrastructure service to its shareholders and other third parties. Also in India, the drive to raise capital for 3G auctions and deployment during 2010 led to significant divestiture of mobile towers to independent companies that operate them on an open access basis. For example, in January 2010 an Indian tower company, GTL Infrastructure, acquired 17,500 towers from Aircel, making GTL one of the largest independent tower companies in the world. American Tower, another independent tower company, has also been acquiring towers in countries such as Chile, Brazil, Ghana, India, Mexico, Peru and South Africa, with the aim of providing open access to such infrastructure.

Many other regulatory authorities, including those of Bangladesh, Nigeria and Pakistan have adopted policies to actively promote infrastructure sharing, especially in the mobile sector. Carefully crafted policy measures can increase time to market, introduce new forms of competition into and foster take up for ICT services. Sharing also addresses the environmental impact of ICT infrastructure, reducing duplicative mobile towers that affect a city’s skyline, for example. However, close ties and information exchanges between providers that participate in sharing agreements may create competition concerns, as they could facilitate collusive practices and reduce competition at the retail level if sufficient control over the network and services is not maintained and provider’s ability to differentiate retail offers and innovate is curtailed. When promoting voluntary sharing, regulatory authorities and policymakers must balance the potential benefits and costs of such measure, in order to achieve the desired objective of promoting more competitive markets and increased roll out of services.

On the wireline side, several governments are promoting a variety of shared infrastructure approaches. In the most interventionist cases, such as Australia, New Zealand and Singapore, policymakers have directed the establishment of a single, open access network that will provide infrastructure services on a wholesale basis to a variety of downstream service providers. Rather than establish an entirely separate network, France has taken a more regulatory approach by setting up sharing requirements and obligations for those building out fiber networks to more rural areas and to apartment buildings. Other countries are also considering regulations that will require incumbent operators (usually those with significant market power (SMP) or who are former monopoly providers) to make their infrastructure available to alternative carriers. This concept might also be extended to other, often government-owned, entities, such as power companies that maintain towers for electricity distribution.
3.6 Opening Vertically Integrated Markets

3.6.1 Benefits and Costs of Vertical Integration

Vertical integration, in which a single firm controls multiple levels of the supply chain, is commonly found in ICT markets around the world, and often involves the same firm owning and operating network infrastructure, as well using this infrastructure to offer retail services to end users. Two main advantages for a vertically integrated firm is the ability to achieve higher economies of scale and lower costs of production by reducing the costs of coordinating upstream and downstream activities. In a competitive market, these efficiencies can benefit consumers through lower retail prices. However, vertical integration may create barriers to entry for new competitors, particularly in the telecommunications sector where a dominant operator may control essential infrastructure.\(^\text{238}\) In such cases, a dominant, vertically integrated operator may strategically discriminate against competitors and stifle competition.

3.6.2 Remedies to Anti-Competitive Conduct by a Vertically Integrated Operator

To address competitive concerns associated with vertical integration, some regulators have required dominant operators to vertically separate to some degree through accounting separation, functional separation or, in extreme cases, structural separation.

Accounting Separation

The least intrusive and most prevalent remedy, accounting separation makes transparent the vertically integrated operator’s wholesale prices and internal transfer prices, enabling regulatory authorities to monitor compliance with non-discrimination obligations or to ensure there is no cross-subsidization. Generally, accounting separation requires the vertically integrated operator to maintain separate records for its upstream and downstream costs and revenues in order to allow the regulator to set wholesale prices for the regulated upstream services. These records are typically subject to independent audit and may also be made publicly available. Although the operator must make its costs transparent, under this remedy it is able to continue benefiting from the efficiencies of vertical integration.

The Info-communications Development Authority (IDA) of Singapore issued Accounting Separation Guidelines to allow monitoring of the ICT sector for potential anti-competitive behavior in 2004.\(^\text{239}\) These guidelines established two levels of accounting separation: detailed segment reporting (applicable to dominant service providers and entities they control) and simplified segment reporting (certain other entities). This two-tiered approach is intended to provide IDA with the necessary information, without unduly burdening operators, to ensure that no dominant provider is engaging in cross-subsidization and to ensure non-discrimination. Currently, incumbent SingTel is the only operator designated as dominant in any market and subject to detailed accounting separation obligations.

Functional Separation

Obligations under functional separation range from simply requiring the operator to establish separate divisions for upstream and downstream activities to requiring the operator to physically separate the wholesale and retail divisions. This may involve the separation of employees (e.g., physically separate offices and prohibitions on the same employee working for both divisions) and separation of information (e.g., limitations on the type and amount of information that may be shared between divisions). Since there is no actual change in ownership or ultimate control under functional
separation, the operator can continue to enjoy many of the benefits of vertical integration. More intrusive than accounting separation, regulators may implement functional separation in “exceptional” cases where there has been persistent failure to achieve effective non-discrimination in relevant markets and if there is little or no prospect of effective competition within a reasonable period after less intrusive remedies have been attempted.

The 2009 EU Telecoms Reform, formally granted national regulatory authorities (NRAs) explicit authority to require network operators holding significant market power (SMP) to functionally separate communication networks from their service branches, but only as a last-resort remedy. Prior to requiring functional separation, an NRA must first find that all less intrusive, market-based remedies have failed to achieve effective competition. Next, an NRA must submit any proposal of functional separation to the European Commission with evidence justifying the regulatory intervention and an analysis of the likely market impacts. Among the provisions that must be included in the proposal are the precise nature and level of separation; the legal status of the separate business entity; identification of the separate business entity’s assets and the products or services to be supplied by that entity; governance arrangements to ensure the independence of the staff; rules for ensuring compliance with the obligations; and a monitoring program to ensure compliance, including the publication of an annual report.

To date, no EU Member State has mandated functional separation. In some cases, such as that of the United Kingdom, dominant operators have voluntarily implemented functional separation. There, BT agreed to establish a separate division for access services called Openreach, which provides most of BT’s wholesale products. According to the European Commission, BT’s functional separation led to a surge in broadband connections, from 100,000 unbundled lines in December 2005 to 5.5 million by 2008.

Structural Separation

Structural separation involves full disaggregation of the vertically integrated operator’s wholesale and retail divisions into separate, individual companies, each with its own ownership and management structure. All benefits associated with vertical integration are eliminated. Regulated structural separation is considered a “last resort” measure and is typically used only if other regulatory interventions have failed and after a comprehensive cost/benefit analysis has been conducted. Structural separation is extremely difficult to reverse and can dramatically affect the market, such as by increasing regulatory uncertainty and impacting infrastructure investment. Additionally, it is difficult to allocate the separated firms’ assets and liabilities in order to ensure the ongoing viability of both entities. As a result, regulatory authorities rarely impose structural separation as a remedy.

In 2010, the Australian Parliament passed the *Telecommunications Legislation Amendment (Competition and Consumer Safeguards) Act 2010*. The Act and implementing regulations set out the procedures by which the dominant fixed line operator, Telstra, must structurally separate control over its copper and HFC network infrastructure, as well as provision of wholesale access services, from retail fixed voice and broadband services. In August 2011, Telstra submitted to the Australian Competition and Consumer Commission (ACCC) its Structural Separation Undertaking (SSU) plan, which commits Telstra to full structural separation by July 1, 2018. Telstra’s structural separation is set to occur through the progressive migration of its fixed line networks to the National Broadband Network Company (NBN Co), which is rolling out a National Broadband Network (NBN) to be provided on a wholesale-only basis. Additionally, the SSU sets out various measures by which Telstra will ensure transparency and equivalence in the supply of regulated services to its wholesale customers during the transition to the NBN. In exchange for structurally separating and providing the NBN Co with access to its fixed line infrastructure, the NBN Co will compensate Telstra AUD 11 billion.
3.7 Network Neutrality

Network neutrality ("net neutrality") generally refers to the notion that an ISP should treat all traffic equally, including any content, application or service. Based on this principle of non-discrimination, proponents of net neutrality seek to restrict ISPs’ ability to interfere with or inappropriately manage Internet traffic. Blocking or slowing down (also referred to as “throttling”) the delivery of certain types of content, applications or services is one of the main concerns of net neutrality advocates. However, such network traffic practices may be considered necessary to ensure that illegal content is not distributed or to better manage networks during congested periods. Another issue raised relates to prioritization of certain types of traffic. This may occur where ISPs deliver latency-sensitive traffic, such as voice or streaming video, faster than traffic that is not latency sensitive, such as a music download. Prioritization may also occur where an ISP charges application or content providers to be guaranteed better or faster access to subscribers.

Additionally, net neutrality proponents also generally seek to improve the transparency of what the ISPs are doing with regard to traffic management and other Internet-regulating actions. This involves whether an ISP discloses to interested parties its network management practices, such as blocking, degrading, or prioritization. Interested parties may include consumers, the government, and applications, content, and service providers.

3.7.1 Goals of Net Neutrality Regulation

There are several overarching goals that regulatory authorities have tended to focus on when instituting net neutrality consultations and rules over the last several years, including: 1) consumer protection; 2) the promotion and preservation of access and innovation and 3) safeguarding freedom of speech and freedom of information. Consumer protection issues include transparency and disclosure requirements, as well as prohibitions or restrictions on blocking or degrading subscribers’ use of lawful content, applications and services.

The second goal addresses the access that content, applications and service providers have to an ISP’s network, particularly if their services competes with an ISP’s services. For example, an ISP may block applications for VoIP services if these services directly compete with the ISP’s voice telephony service. Another example may involve paid prioritization in which an ISP favors one content provider over another through a peering agreement, which could affect competition among content providers. Finally, there is also a concern that as new applications and services are developed, they may find their access blocked or limited—either for (anti)competitive reasons or because new entrants do not have the ability to pay for priority access on an ISP’s network.

3.7.2 Regulatory Approaches

As policymakers consider whether net neutrality provisions are needed in their country, it is important to note that the possible approaches to net neutrality may be viewed along a spectrum. At one end of the spectrum, a policy would require “pure” net neutrality of no discrimination; the ISP would be prohibited from managing Internet traffic in any way, and would simply work on a “best efforts” basis delivering all content on equal terms. Companies would be prohibited from charging content providers for priority or favored access. At the other end of the spectrum are policies that would permit an ISP to engage in any network management practice, including allowing an ISP to actively block users from accessing certain types of legal content, applications or services without the users’ knowledge. It should also be noted that although a country may not have specific net neutrality policies or rules in place, issues related to blocking, delaying or prioritizing traffic may be addressed under competition laws,
while transparency and disclosure may be addressed by consumer protection laws or laws protecting freedom of information/speech.

In practice, regulatory authorities are adopting net neutrality policies all along this spectrum. For instance, a regulator may find that it is not necessary to regulate ISPs’ network management practices, but that stronger rules on transparency of traffic management policies are required to ensure that consumers are well-informed. This is the case, for example, of the EC policy on net neutrality contained in the April 2011 report, *The Open Internet and Net Neutrality in Europe*. The report frames traffic management as a quality of service issue for consumers relating to (i) blocking or throttling lawful Internet traffic and (ii) Internet traffic management practices. The EC does not impose any rules or restrictions on the blocking or throttling of lawful Internet traffic, but recognizes that there are concerns over possible consumer protection or competition issues. Instead, the EC recommends that national regulatory authorities conduct further inquiries into such practices before adopting any rules or guidelines on the matter. Similarly, the EC recognizes that traffic management is necessary to ensure the smooth flow of Internet traffic, particularly when there is network congestion. As such, the EC does not impose any rules or restrictions on traffic management practices, such as packet differentiation, IP routing or filtering between “safe” and “harmful” traffic. The only rules imposed by the EC in the Open Internet Report, aside from the ability to switch providers in one business day, are associated with transparency and disclosure. These require Internet providers to ensure that adequate information about their services is available to consumers, including identifying any possible restrictions on access to certain services, actual connection speeds and possible limits on Internet speeds. Additionally, providers must make certain that consumers are informed about traffic management practices and their effect on service quality (e.g., bandwidth caps), prior to signing a contract.

Under another approach, a regulator may decide to institute both new network management and transparency rules, but fall short of requiring “pure” net neutrality by permitting ISPs to discriminate against certain types of traffic for a specific purpose (e.g., to manage congestion) and according to a set of standards, such as “reasonable network management.” This is the case of France, where ARCEP released a report entitled *Neutrality of the Internet and Networks: Proposals and Guidelines* in September 2010. In the first proposal, ARCEP has recommended that ISPs be required to provide to end users: (i) the ability to send and receive the content of their choice; (ii) the ability to use the services and run the applications of their choice; (iii) connect the hardware and use the programs of their choice, provided they do not harm the network; and (iv) a sufficiently high and transparent quality of service. Under the second proposal, ARCEP recommended that ISPs may not discriminate against different types of traffic, whether by type of content, service, application, device or address of origin/destination. Under the Guidelines exceptions to the first two recommendations may be acceptable if an ISP follows the third proposal by complying with the “general principles of relevance, proportionality, efficiency, non-discrimination between parties and transparency.” Pursuant to the fourth proposal, ARCEP will permit ISPs to provide managed services along with Internet access services, but would require ISPs to not degrade Internet access service quality below a minimum, satisfactory level. However, ARCEP did not provide what this minimum quality of service level should be.

In the fifth proposal of the Net Neutrality Guidelines, ARCEP addressed transparency and disclosure requirements. For example, ARCEP requires that in their marketing materials, service contracts and customer information through the duration of the contract, ISPs must clearly and concisely disclose to end users all relevant information regarding: (i) the services and applications that can be accessed through these data services; (ii) the quality of service; (iii) the possible limitations of the service and (iv) any traffic management practices that may affect the user. In particular, any restrictions on data transmission that do not conform to the first two recommendations must be disclosed to users.
Like France, Chile has also adopted net neutrality rules limiting discrimination by ISPs against access to and use of legal online services, applications and content. In addition, Chile was the first country in the world to enact broad net neutrality legislation under the Chilean Net Neutrality Act, which was signed into law on August 18, 2010. The law focuses on the principles of non-discrimination and transparency and prohibits ISPs from blocking, throttling, or discriminating against the transmission of any legal application, service, or content. However, ISPs are allowed to manage traffic on their network, but not in an anticompetitive fashion. Chile’s regulator, Subsecretaría de Telecomunicaciones (SUBTEL), issued the implementing regulations of the net neutrality law in March 2011.

The following table summarizes the approaches being taken in selected countries, as well as each country’s progress in the process of developing net neutrality rules.

Table 3.1. Status of net neutrality initiatives in selected countries

<table>
<thead>
<tr>
<th>Stage in process</th>
<th>Position along the spectrum (least to most stringent)</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>No consultation</td>
<td>Considered net neutrality, but found no problems requiring a consultation and subsequent rule; will continue to monitor</td>
<td>Denmark, Germany, Ireland, Portugal</td>
</tr>
<tr>
<td></td>
<td>Non-binding neutrality guidelines</td>
<td>Norway</td>
</tr>
<tr>
<td>In consultation stage</td>
<td>Information gathering on current practices to potentially establish rules</td>
<td>Italy</td>
</tr>
<tr>
<td></td>
<td>Transparency/disclosure rules proposed, but no traffic management</td>
<td>United Kingdom</td>
</tr>
<tr>
<td></td>
<td>Transparency/disclosure rules and traffic management/non-discrimination rules proposed</td>
<td>Brazil, Sweden</td>
</tr>
<tr>
<td>Rules/legislation adopted</td>
<td>Transparency/disclosure rules but no traffic management/non-discrimination rules</td>
<td>European Commission</td>
</tr>
<tr>
<td></td>
<td>Transparency/disclosure rules and traffic management/non-discrimination rules</td>
<td>Canada, Chile, France, Netherlands (lower house of Parliament passed in June 2011, upper house to pass by year-end), United States</td>
</tr>
</tbody>
</table>

Source: Telecommunications Management Group, Inc.

3.7.3 Distinction between Wireline and Mobile Broadband Services

Existing mobile networks generally present operational constraints that wireline broadband networks do not typically encounter, particularly relating to efficient use of the spectrum. This puts greater pressure
on concepts such as “reasonable network management” for mobile broadband providers. As a result, some regulatory authorities have recognized the need to establish differentiated network management rules for wireline and mobile broadband services.

This is the case in the United States, where the FCC’s Open Internet Order applied transparency rules equally to both wireline and mobile broadband network services, but applied different network management rules to the different technologies. However, while the rule for mobile broadband is less stringent than for wireline, it still prohibits operators from blocking certain websites or VoIP applications, as is occurring in several European countries, such as Sweden and the Netherlands.

Similarly, in France net neutrality rules would be applicable to any broadband access technology, (i.e., to both wireline and mobile networks). However, ARCEP may implement the rules differently, particularly with respect to the means of assessing which traffic management mechanisms are acceptable. ARCEP would accept mobile operators restricting access to certain sites or applications for objective, non-discriminatory, and justified reasons on the basis that mobile networks are currently more vulnerable to congestion due to scarcity of available frequencies and the surge in data traffic generated by smartphones. However, ARCEP proposed that traffic management practices of mobile network operators must satisfy actual technical imperatives and cannot involve banning or blocking an application or a protocol (including VoIP, peer-to-peer, or streaming), nor must these practices act as a substitute for investing in increasing network capacity.

In the EU, the Open Internet Consultation also briefly addressed whether principles governing traffic management should be the same for both wireline and mobile networks. The Consultation notes that wireline broadband providers have not blocked VoIP services, but that some mobile operators have blocked VoIP services from third party providers or have charged rates to end users in excess of normal rates for equivalent amounts of data. Since traffic management rules were not imposed by the Open Internet Report, there is no distinction made between wireline and mobile services. However, the transparency, disclosure and switching rules apply equally to both wireline and mobile Internet providers.

3.8 Security in Cyberspace

Broadband services and applications are increasingly expanding into every aspect of our lives. Greater numbers of consumers are now using broadband Internet connections for education, entertainment, banking, shopping and to interact socially and with their governments. Businesses are not only relying on broadband to increase internal efficiency and productivity, but online web representation is more important for many businesses than traditional marketing channels such as printed publicity materials. Furthermore, essential services, such as water and electricity supply, banking, transportation infrastructure and public safety, now heavily rely on CII.\(^{259}\)

In an increasingly broadband-connected environment, even brief interruption, degradation, or compromise of service may have significant social, economic, and political consequences that negatively impact consumers, businesses, and governments. Given these consequences, the success of broadband requires a significant focus on security.\(^{260}\) Due to its broad scope, cybersecurity may be seen as enabling both supply and demand of broadband. From the demand side, users need to feel safe online to take full advantage of broadband services and applications; and businesses must have confidence in leveraging broadband to increase productivity and engage in online activities. From the supply side, CII must be protected from attacks to guarantee stable and dependable services. In addition, governments must possess the capabilities to enforce cyber laws, which in many cases require cross-border cooperation. As such, cyber-security and cybercrime policies, laws, regulations, and enforcement will
play a critical role in the development of the broadband ecosystem. This legal framework may include criminal codes, laws on privacy, commercial transactions and electronic communications, and laws relating to criminal procedure and enforcement, among others. Overall, these policies and laws must balance the many inherent trade-offs between, for example, the convenience and ease of information access in a digital age on one hand, and the need to protect data privacy and security on the other hand.

3.8.1 Data Protection
The ability to protect digital data is essential to promoting a safe and secure broadband ecosystem, which increases consumer confidence and thereby enhances demand. Data protection generally includes the protection of users’ personal identifying information, such as banking, medical, credit card, and other private data, as well as protection of intellectual property and other sensitive, proprietary information of businesses and governments, such as employee data or client information. Effective cybersecurity policies and regulations are needed to combat the many costly violations of data privacy occurring each year, including computer hacking to steal a person’s identity or remotely deleting information through viruses.

3.8.2 Security of Critical Information Infrastructure
Securing critical national infrastructure and specifically critical information infrastructure (CII) is also a key component of facilitating the success and stability of broadband networks. Infrastructure is considered to be critical if its destruction would have a debilitating impact on the defense or economic stability of the country. Thus, electricity grids, telecommunications systems, transportation, water supply systems, banking and finance, and emergency services are all deemed to be critical infrastructures.261

International cooperation is a significant aspect in securing CII. It is important to consider the role of standards and the role of government in developing those standards. Generally, a global standard is developing around critical infrastructure protection aimed at ensuring that any disruptions to CII be brief, infrequent, manageable, isolated, and minimally detrimental.262 However, national frameworks vary widely as to which cybersecurity issues are addressed and how CII is protected.

At both an international and a national level, private, governmental and non-governmental sectors need to take steps to increase the security of their networks, services, and products. The effectiveness of any critical infrastructure protection program is directly proportional to the extent of cooperation among these actors. For this purpose, Computer Emergency Response Teams (CERTs) are being implemented in a number of countries around the world as a means of identifying cyber vulnerabilities and defending against cyber attacks. (See Box 3.4)

Box 3.4. Computer Emergency Response Teams (CERTs)

| CERTs are cooperative endeavors among governments, academic institutions, and commercial entities aimed at identifying cyber vulnerabilities and defending against cyber attacks. Generally, CERTs focus on technical issues and information sharing, thereby providing primary early warning functions of cybersecurity breaches.263 They are designed to promote information sharing and better coordination among both the private sector and government agencies. For example, in March 2011, the Sri Lanka Computer Emergency Response Team (SLCERT) identified several fraudulent websites located in India and China that were selling fake tickets online to the Cricket World Cup 2011 in order to steal users’ credit card information.264 SLCERT was able to inform the Indian Computer Emergency Response Team about these fake websites and is seeking legal action against those responsible. Greater international cooperation among CERTs, such as the Sri Lankan and Indian CERTs, is facilitated |
through the development of the Forum of Incident Response and Security Teams (FIRST), which brings together 238 CERTs across 48 countries, including the national coordination centers for India, Singapore, Brazil, Argentina, Colombia, Qatar, and Saudi Arabia.265 FIRST aims to foster cooperation and coordination in incident prevention, to stimulate rapid reaction to incidents, and to promote information sharing among members and the community at large.266 Thus, both FIRST and other CERTs are a positive step toward coordinating international responses to cybersecurity problems.

\textit{Source: Telecommunications Management Group, Inc.}

\section*{3.8.3 Cybercrime}

Cybercrime can be broadly described as criminal offenses committed within or against computer networks, or by means of computer networks. Cybercrime policies and laws focus on the investigation and criminalization of certain offenses, as well as their prevention and deterrence. As such, cybercrime covers a broad range of conduct, which can generally be divided into four broad categories, as defined by the Council of Europe Convention on Cybercrime:267

1. Offenses against the confidentiality, integrity and availability of computer data and systems;268
2. Computer-related offenses;269
3. Offenses related to infringements of copyright and related rights;270 and
4. Content-related offenses.271

All of the offenses in the first category are directed against one of the three legal principles of confidentiality, integrity, and availability. As opposed to crimes that have been covered by criminal law for centuries, the computerization of crime is relatively recent. Thus, in order to prosecute these acts, existing criminal law provisions need to not only protect tangible items and physical documents, but must also safeguard the abovementioned legal principles.272 Some of the most commonly occurring offenses in this category include illegal access (hacking and cracking), data espionage, illegal interception, data interference, and system interference.

Computer-related offenses cover a number of cybercrimes that require computer access to commit. These offenses tend to have more effective and stringent legal repercussions than offenses in the other categories mentioned above. The most common computer-related offenses include computer-related fraud, computer-related forgery (phishing and identity theft), and the misuse of devices.273 The main difference between computer-related and traditional fraud is the target of the fraud; if a person is targeted then it is traditional fraud, but if a computer or computer system is targeted it becomes computer-related fraud. Although some criminal law systems do not yet cover the manipulation of computer systems for fraudulent purposes, offenders often still can be prosecuted.274 Nonetheless, many governments may need to include computer-related offenses in their definitions of various crimes in order to prosecute. Because of the broad scope of these offenses, some may fall within the ICT regulator’s jurisdiction such as those relating to consumer protection. Computer-related offenses, such as fraud and forgery, generally fall within the purview of criminal law enforcement authorities, while others like protection of privacy or unsolicited communications (spam) may be the responsibility of data protection authorities or a consumer protection agency. However, if mandates overlap it is critical for all relevant authorities to coordinate the exercise of their respective functions.275

Offenses related to infringements of copyright and related intellectual property rights (IPR) are another category of cybercrime. These violations relate the unauthorized or prohibited use of protected works, trademarks or patents, facilitated by using the Internet’s inherent ability to disseminate information. With regard to content-related offenses, the development of legal instruments to deal with these
offenses is heavily influenced by national approaches. The classification of content-related activity as a criminal offense or protected free speech is dependent on each country’s cultural and legal frameworks. The following sections address these issues.

3.8.4 Cybersecurity and the Need for International Coordination

Cybersecurity is highly globalized because cybercrimes and other attacks can be committed against Internet users, businesses or governments from anywhere in the world. As such, international coordination is pivotal to the success of cybersecurity. Cybercrime and cyberwar have very clear and direct negative effects on economic activity, but cyberdefense can have similar negative effects, due to its high cost and information inefficiencies caused by deliberate isolation of networks and databases from one another.

There are several barriers to a successful international cybersecurity framework. One is the different approaches to cybersecurity that countries take, which can lead to a lack of multi-stakeholder participation in both policy-making and legislation. Another problem is the conflict between upstream policies promoting an “e”-agenda and the downstream protections of rights and property. In addition, legal concepts may be outdated in the burgeoning world of cyberspace. The core issues of jurisdiction and sovereignty make it difficult to effectively cross borders to address international cybersecurity events. A fourth issue is simple human error when using the Internet or writing software code. A final barrier to international cybersecurity coordination is that existing cybersecurity tools are often not fully applied. For example, liability in some countries is often imposed on a case-by-case basis rather than pursuant to statutory and regulation requirements aimed at the particular issue. These issues, however, are not insurmountable. Rather, concerted, effective national legislation and international coordination frameworks prepared to prevent, identify, and prosecute cybercrimes are needed to ensure the safety of the Internet and ICTs.

3.9 Privacy and Data Protection

Threats to privacy and data protection must be addressed to foster demand and promote broadband take-up. Legal and regulatory tools to address these issues can help build consumer trust and confidence which is indispensable for a full broadband experience. While consumer privacy and data protection is not a novel subject, broadband diffusion and technology innovation compound the potential risks of the collection, use, protection, retention, and disposal of a wide range of personal information. Increased data processing and storage capabilities, advances in online profiling, and the aggregation of online and offline information are allowing a diverse set of entities to gather, maintain and share a wide array of consumer information and data.

Consumers care about their privacy online. For example, when the social networking service Facebook released new privacy controls in December 2009, 35 percent of its 350 million worldwide users at the time chose to revise and customize their account settings. Governments are also concerned with protecting their citizens from practices that may violate their privacy. The worldwide controversy regarding Google’s data and image collection practices for its Street View, Maps, and Latitude services and its implications over data privacy highlights this point. Over 20 countries around the world have launched investigations into Google’s practice of collecting photos and information to map Wi-Fi networks, reaching different findings and leading to multiple remedies, including fines.

The unprecedented ability to collect data, often without the knowledge of the data subject, poses new, broadband-specific challenges and opportunities linked to ensuring online privacy and data protection. Issues such as cloud computing, online behavioral advertising, web-tracking, and
location-based services\(^{285}\) may create additional privacy risks but at the same time may also provide tremendous benefits for consumers in the form of new products and services. However, increased collection of personal data is not limited to businesses and the private sector. Governments also increasingly collect such data from their citizens as they engage in e-government and other initiatives. Thus, to promote broadband, countries must set up frameworks that strike the appropriate balance between the benefits to citizens and consumers of new and innovative technologies and the risks such technologies may create to their privacy and personal data. Also, due to the cross-border nature of Internet data traffic flows, international cooperation and coordination will be critical to enforce online privacy frameworks.

3.9.1 Scope of Privacy and Data Protection in a Broadband Environment

Privacy and data protection in the broadband environment must continue to focus on assessing risks to consumer information throughout its lifecycle—from collection to use to storage to transmission to disposal—and then on adopting safeguards that are reasonable and appropriate to mitigate the identified risks. To date, two broad approaches towards personal data protection have been adopted around the world. Many countries, such as EU member states and many Latin American countries, have opted for a rights-based approach to personal data protection. Under this system, personal data protection is regulated as a fundamental right\(^ {286}\) that applies to all personal data, irrespective of the type of data.\(^ {287}\) By contrast, countries such as the United States have to date relied on “broad self-regulation and targeted sectoral legislation to provide consumers with data privacy protection.”\(^ {288}\)

More recent developments seem to be bridging this divide, with the European Commission and the U.S. Federal Trade Commission proposing many common changes and upgrades to privacy protection in the wake of rapid technological developments associated with broadband services and the Internet.\(^ {289}\) This includes placing emphasis on informed consent, increased transparency of data collection, raising awareness, and increasing responsibility of data controllers (i.e., privacy by design).\(^ {290}\)

Informed Consent

Informed consent refers to the “freely given specific and informed indication” of an individual’s agreement to data collecting and processing activities, and allows the consumer to make informed and meaningful choices.\(^ {291}\) Broadband-enabled activities, such as online behavioral advertising, raise new questions regarding informed consent and the extent to which, for example, Internet browser settings may be considered to deliver such consent\(^ {292}\) or if a more uniform, comprehensive mechanism should be adopted for online behavioral advertising, sometimes referred to as “Do Not Track.”\(^ {293}\) While there may not be a clear trend internationally at this time, it can be expected that development of informed consent mechanisms will continue to be a key factor for online privacy protection in a broadband world.

Privacy by Design

“Privacy by design” advances the view that privacy cannot be assured solely by compliance with regulatory frameworks, but instead requires privacy considerations to become engrained in everyday business practices.\(^ {294}\) Both the European Commission and the U.S. Federal Trade Commission are proposing to follow this approach as a means to enhance a data controller’s (whether it be a business or government) responsibility in handling personal data.\(^ {295}\) Under this approach, companies should incorporate substantive privacy protections into their practices, including data security, reasonable collection limits, sound retention practices, and data accuracy. They should also maintain comprehensive data management procedures throughout the life cycle of their products and services.\(^ {296}\) Privacy and data protection authorities are currently looking at ways to encourage compliance with such...
policies and enforcing possible instances where an insufficient level of care has been exercised by data controllers.

Broadband and the scope of personal data

Broadband-enabled data profiling is blurring the line of what constitutes personally identifiable information (PII) subject to protection. It used to be that certain categories of PII, such as an individual’s name, address or personal identification numbers, were clearly defined and protected. As noted by the U.S. Federal Trade Commission, however, the comprehensive scope of data collection that comes with broadband applications and services allows disparate bits and pieces of “anonymous” information from online and offline sources to be aggregated to create profiles that can be linked back to a specific person, thus making old definitions of PII less relevant.\(^{297}\) This view is in line with that of Europe, where all information relating to an “identified or identifiable person” should be protected, including “all means likely reasonably to be used either by the controller or by any other person to identify said person.”\(^{298}\) Mexico has recently implemented a broad definition as part of its 2010 data protection legislation, defining personal data to include “any information concerning an identified or identifiable individual.”\(^{299}\) Expansion of the scope of protected personal data will pose continued challenges going forward as innovation increases the type of data that may be aggregated in innovative ways and then be used to trace information back to a specific identifiable individual.

Increased transparency in data collection

In the broadband world, consumers must be given sufficient information to make informed choices regarding the collection and use of their personal data. The proliferation of actors and technical complexity involved in activities such as behavioral advertising make it increasingly difficult for individuals to know when their data is being collected, by whom and for what purpose. This requires more transparency by data controllers about how and by whom data are collected and processed. In addition, this information needs to be presented in a way that consumers will understand it. It is often the case that even when privacy policies are provided, they are long and incomprehensible for many consumers. As such, when consumers are faced with the burden of trying to read and understand these policies, they often simply scroll down through them and accept the terms provided without really knowing what they are accepting. Increased transparency in a broadband environment may be addressed through facilitating standard privacy notices drafted using plain language or by educating consumers on privacy matters. Also, transparency is enhanced using policies such as data breach notifications.\(^{300}\)

3.9.2 Awareness

There is also a need to raise awareness, especially among younger users, regarding the impact of broadband and new technologies on personal privacy. In many cases, consumers may not know or understand enough about the data collection and use practices and their privacy implications. For example, as social networking services, or other similar applications, continue to become increasingly popular ways to interact online, it is critical to educate young people about safe social networking and other online issues. Data protection authorities have a key role to play in educating individual users by holding conferences, workshops, media campaigns, and fostering industry to also actively engage in awareness raising initiatives. Section 6.2.2 further addresses the issue of raising awareness and educating users on matters relating to privacy.
3.9.3 International Enforcement and Policy Cooperation

Proliferation of complex, cross-border data flows and cloud computing services and applications demand increased international cooperation to enforce privacy and data protection. One of the many opportunities enabled by the Internet is that it makes it easier for entities established in one country to provide services in another to process data online. However, this often makes it difficult for authorities to determine the location of the personal data and of the equipment used to process it. As noted by the European Commission, however, this fact should not deprive the data subject from protection. Thus, international cooperation and coordination is a key element for enforcement actions. To this end, several international initiatives are underway dealing with cooperation and coordination for the enforcement of privacy laws. One example is the 2007 OECD Council’s Recommendation on Cross-border Co-operation in the Enforcement of Laws Protecting Privacy. On this basis, in 2009, 13 privacy enforcement agencies from around the world created the “Global Privacy Enforcement Network” (GPEN) to facilitate cross-border cooperation in the enforcement of privacy laws. Similarly, in 2010, the Asia-Pacific Economic Cooperation forum (APEC) established the APEC Cross-Border Privacy Enforcement Arrangement (CPEA), a multilateral cooperation network for APEC privacy enforcement authorities, with the participation of authorities from Australia, Canada, Hong Kong (SAR) and the United States.

3.10 Regulation of Broadband Content

Content is the currency of the Internet: more, better, and timely content means higher visibility, more visitors and increased revenue. Thus, more relevant and more local content is the strongest vehicle to enhance broadband demand. The laws and rules that regulate content in the offline world have been gradually applied to and adapted for online content, even as the pace of innovation online threatens to perpetually render them obsolete. Online content can be produced by traditional methods or generated collaboratively by the users themselves—it can be a song played by an Internet radio station, a viral video in an embedded YouTube clip, a blog post, or a news article published by a news website.

Broadband has enabled the easy transfer of all kinds of voice, data, video and multimedia content. The ability to disseminate and access legal content online is critical to enable broadband deployment. It impacts the development of new services and applications, the launch of innovative online businesses and services and the active participation in social and political spheres. Regulation of content over broadband has significant implications both for the supply of broadband services and applications (e.g., securing rights to distribute content), as well as for the demand for broadband (e.g., the existence of compelling content to attract users). This section reviews the intersection of supply and demand factors with the legitimate goal of regulating some forms of online content, recognizing the need to establish an appropriate balance between the two. In addition, this section addresses certain regulation of IPR over broadband and certain content-related business practices that may have anticompetitive effects that hinder broadband development.

3.10.1 Freedom of Opinion and Expression

One of the fundamental rights of persons is the right to freedom of opinion and expression, which includes freedom to hold opinions without interference and to seek, receive, and impart information and ideas through any media and regardless of frontiers. Content regulation, including surveillance and monitoring of Internet use, needs to take into account the standards set by international human rights law, and have regard to the unique nature of the Internet.
A recent report by the Special Rapporteur on the Promotion and Protection of the Right to Freedom of Opinion and Expression of the United Nations’ Human Rights Council notes that any restriction by a state of the right to freedom of expression must meet the strict criteria under international human rights law. The report concludes that there should be as little restriction as possible to the flow of information via the Internet, except in few, exceptional, and limited circumstances prescribed by international human rights law. It also stresses that the full guarantee of the right to freedom of expression must be the norm, and any limitation considered as an exception, and that this principle should never be reversed.

The collaborative web, sometimes called Web 2.0, has revolutionized the way people communicate. Facebook, Twitter, and other social networking websites allow citizens to discuss, debate, and organize. Citizen journalists have democratized the gathering and dissemination of news; postings on personal blogs and user-submitted videos on YouTube are often the first outlets to break a news story. In fact, many have noted that the uprisings in the Arab nations in 2011 were organized in part through the use of social networks such as Facebook and Twitter.

With faster speeds, and in particular faster upload speeds, broadband can facilitate collaboration as well as access to information. As more and more Internet users employ the web, not just to consume but also to share, the Internet can become a virtual town square for citizen participation. By the same token, restrictions on Internet use, the censorship of certain information or even restrictions on access posed by “net neutrality” concerns can cut off this vital avenue for citizen engagement. Governments will need to strike a balance between the legitimate need to restrict illegal content and the rights of users to participate freely and lawfully in cyberspace.

Some commentators have proposed that a new economy is emerging where people contribute freely to enable the production of information goods and services outside of the market (e.g., Wikipedia). Such a “networked information economy” has the potential to increase individual autonomy by allowing individuals to do more for themselves and by providing alternative sources of information from both faraway and nontraditional sources such as other individuals.

3.10.2 Regulating Specific Forms of Content

Countries have different social, cultural, and moral traditions. These traditions generally are enforced by legislation that prohibits the display or dissemination of certain types of content. Governments have legitimate reasons to regulate content: protection of minors, prevention of vices and national security, to name a few. There will inevitably be tensions as countries attempt to strike the right balance between the regulation of content on the Internet and the protection of fundamental rights, such as freedom of expression and information, which are strongly enabled by broadband; broadband-enabled Internet will make such restrictions more difficult to enforce.

When a provider of prohibited content operates within a country’s borders, it should be simple to shut it down as allowed by that country’s laws. However, if the proscribed content comes from overseas, such as from a foreign website, the prohibition can be difficult or impossible to enforce. Nonetheless, a growing number of countries are implementing Internet controls of ever-increasing sophistication, including monitoring and filtering.

Sometimes content is restricted by a government, possibly in an attempt to protect a domestic industry’s interest. Such appears to be the case with online gambling in the United States. In 2006, the federal legislature, in an attempt to impede U.S. residents from gambling online, passed the “Unlawful Internet Gambling Enforcement Act.” The law prohibits gambling businesses from accepting funds from gamblers wherever it would be unlawful under federal or state law. Passage of the law prompted
Antigua and Barbuda to file a complaint with the WTO, in which it claimed that the United States had violated its General Agreement on Trade and Service (GATS) commitment to free trade in recreational services. The WTO ultimately ruled in favor of Antigua and Barbuda and awarded it the right to suspend USD 21 million annually in IPR held by U.S. firms.\footnote{313}

There are options other than government regulation that achieve the goal of restricting certain types of content. For example, the movie and videogame industries, among others, voluntarily rate their content in order to help consumers identify content appropriate for themselves and their families. The Family Online Safety Institute (FOSI), an international nonprofit organization, administers a program whereby websites rate their content in terms of language, violence, sexual content, etc., in response to a standard questionnaire.\footnote{314} In addition, commercial vendors have developed personal computer (PC) applications that employ keyword-based filtering to allow parents to control the kinds of websites their children can visit. Similarly, the development of industry codes of practice relating to online content may be another viable alternative to government regulation. This is the case, for example, in Australia, where the Internet Industry Association has adopted a Code of Industry Co-Regulation relating to Internet and Mobile Content.\footnote{315}

Another relevant issue in the regulation of content over the Internet relates to the issue of ISP liability. If a user posts prohibited content on her website, is the ISP that hosts the website liable? In many countries, the answer is no: ISPs and online service providers (OSPs) such as YouTube or Facebook are not liable for the content that users upload to their systems as long as they are not specifically aware of the prohibited content. This applies not only to prohibited content such as child pornography, but also to infringement of IP rights, defamatory statements and fraudulent activity, among others. If it were not for this “safe harbor,” ISPs and OSPs would have to monitor every last bit of user-contributed content and analyze it for possible legal repercussions—likely making many of today’s most popular and innovative websites unfeasible to operate. However, if an ISP or OSP becomes aware or is made aware of prohibited content on its system, it must act promptly to remove it or risk losing its safe harbor.

Such is the case regarding copyright in the United States, where the Digital Millennium Copyright Act (DMCA) creates a safe harbor for ISPs and prescribes the procedure rights holders should follow to request that illegally-posted content be taken down.\footnote{316} The EU policy for ISP liability is very similar to that of the United States.\footnote{317} South Africa’s Electronic Communications and Transactions Act of 2002 largely follows the example set by the United States and the EU for ISP liability by creating a DMCA-like “notice and takedown” system (the first such system in sub-Saharan Africa).\footnote{318} In May 2010, Chile became the first country in Latin America to amend its legislation in order to regulate ISP liability.\footnote{319} Chile’s law follows the familiar “notice and takedown” scheme; however, the notice must be issued by a court after evidence is presented by the rights holder in an expedited hearing.\footnote{320}

3.10.3 Intellectual Property Rights

Compared to the limited bandwidth networks of the past, broadband’s inherent capacity to transmit large amounts of information has made it easier to share all types of copyrighted works, including songs, books, and videos. And as the software to find and share such works has gotten better and easier to use, the problems associated with the illegal sharing of copyrighted works has become a major issue. IPR refer mainly to the rights of those persons or entities that hold copyrights, patents, or trademarks. IPR have long been recognized and protected to encourage investment into and creation of new artistic works, inventions, and businesses. But the very things that make the Internet so powerful—its global reach, low cost and nearly frictionless nature and potential for anonymity—can enable careless or unscrupulous users to easily infringe the IP rights of others.
A major concern for copyright holders is illegal filesharing, which is the duplication and dissemination of digital files among Internet users. One of the most powerful aspects of the Internet is how it facilitates the sharing of information between users of all backgrounds, regions, and levels of expertise. But the free sharing of copyrighted works—for example, MP3 files containing copyrighted songs—is likely to be considered a copyright infringement. With digital media, an unlimited number of bit-perfect copies of a work can be made and disseminated. And with faster broadband connections, users can share and download more and larger files—not just songs, but movies, television shows, and PC applications (particularly games) as well.

Copyright holders successfully litigated against the first generation of filesharing networks, including services such as Napster that operated based on a centralized index. Victory in court meant taking down the central index, effectively shutting down the network. Users soon started sharing files using new peer-to-peer technologies such as BitTorrent, which because of their decentralized nature, are much harder to shut down than first-generation filesharing networks. 321

To combat illegal filesharing, some countries have enacted so-called graduated response or “three-strike” laws. France was perhaps the first country to try this method, introducing such a law in 2009. 322 Under the law, users who infringed copyrights online would be given a first and second warning. Upon a third infringement, users could be subject to a fine, jail time, and suspension of their Internet access. Monitoring of infringing users was suspended in May 2011 because the software used to collect infringers’ IP addresses and send them to the government was found to contain major security flaws; however, there has been no change to the three-strike law itself. 323 New Zealand’s Copyright (Infringing File Sharing) Amendment Act 2011; also puts in place a three-notice regime to deter illegal file sharing. Other countries including Malaysia and India have considered similar laws. 324 A proposed international agreement known as the Anti-Counterfeiting Trade Agreement (ACTA) has in some drafts included graduated response measures. 325

An alternative solution involves copyright holders working directly with ISPs, foregoing formal legal proceedings. Under this system, copyright holders that detect infringement from a certain IP address contact the ISP in control of that IP address and relay their findings. The ISP then searches its records to correlate the IP address to one of its customers. Finally, the ISP contacts the customer directly, warning the customer that copyright infringement is a violation of the ISP’s terms of service and could lead to disconnection. No customer information is revealed to the copyright holder as part of this process. At least one study shows that the majority of Internet users would cease the offending activity after receiving a warning. 326

Other issues concerning IPR in the broadband arena include protection of patents and trademarks. It is easy to intentionally or inadvertently infringe patents, especially software and business model patents. Trademarks are often involved in cases of cybersquatting (i.e., registering a domain name containing someone else’s trademark with the intent to deceive or hold it for ransom) and counterfeiting, which is especially common in online auction sites such as eBay. IPRs often run contrary to the concept of a free and open Internet, and indeed must be carefully balanced with the rights of users to freely comment, discuss, and participate online.
Chapter 4. Extending Universal Broadband Access and Use

4.1 Introduction

Examples from around the world demonstrate that letting the market work can go a long way towards achieving widespread broadband access. Most countries rely primarily on private sector initiatives and investment to achieve broadband access and use throughout their territories. Yet even in well-working market environments some gaps typically remain, between and within countries. Despite declining costs, some locations will not be commercially viable in the foreseeable future. In places with broadband service, some users will not be able to afford it. Persons with disabilities may have difficulty using standard equipment. These are some of the situations where market forces alone are not likely to ensure access to broadband. When government steps in to fill these gaps, it goes ahead of or beyond the market. Achieving broadband access ahead of or beyond the market can be understood as “universal broadband access.”

An important question for the achievement of universal broadband access relates to the role of governments when market mechanisms alone do not meet goals for broadband access and use. Some degree of government intervention may be required to complement the market and overcome impediments to universal broadband. However, a distinction should be made between enabling, facilitating and complementing market developments, versus substituting government decisions for market forces and public sector investment for private investment. There is also the question of whether and to what extent scarce public sector resources, for which there are many competing demands from other sectors, should be used to extend broadband ahead of or beyond the market.

Governments have a range of instruments at their disposal to narrow gaps or accelerate roll-out of broadband (see Chapter 1 and Chapter 3). The choice of instrument depends on the specific obstacles that the government is trying to overcome. These obstacles may involve the following:

- A proposed investment may not be commercially viable;
- The cost of doing business in the country may be too high;
- Laws and regulations may not be well-suited to facilitate the adoption of new technologies and business models;
- There may be lack or shortage of long-term financing (especially in local currency) commensurate with long economic lives and payback times of the investments;
- Regulatory and political risk may undermine what otherwise would be an attractive business proposition; and
- Uncertain prospects for market development may pose excessive commercial risk.

This chapter seeks to provide an overview of what policymakers can do to address perceived shortfalls, to define a broadband development strategy capable of addressing market failures and to work towards achieving universal broadband service. It discusses the different levels of access that a government strategy may pursue; the role of private-led competitive markets in achieving these objectives; the role of the government in narrowing or eliminating any gaps between markets and the country's development needs; and how effective government strategies can be designed to meet this challenge. This chapter then examines the use of fiscal resources to support private supply of broadband, including choice of instruments, use of subsidies and mechanisms to collect and disburse funds for subsidy.
4.2 Universal Access Strategy and Broadband Development

The history of information and communication development in low- and middle-income countries shows that private-led, increasingly competitive markets are highly effective at extending new networks and services throughout the population. In numerous countries, chronic acute telephone service shortages gave way to rapid growth once market-oriented sector reforms were adopted. Mobile phones, initially a premium voice service, now provide a platform for a wide range of information and communication services and applications, covering more than 80 percent of the world’s population. The Internet has been growing even faster.

Each new generation of communications services has diffused throughout the population faster than the previous one. Following sector reforms, the number of wireline telephones per capita took over 30 years to multiply tenfold, but are now in decline worldwide. On the other hand, the number of mobile phones took about 12 years and the number of Internet users took only about eight years (see Table 4.1).

Table 4.1. From the Missing Link to the Digital Divide and Beyond: Low- and Middle-Income Countries

<table>
<thead>
<tr>
<th></th>
<th>1980</th>
<th>1990</th>
<th>2000</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population, billion</td>
<td>3.6</td>
<td>4.4</td>
<td>5.1</td>
<td>5.8</td>
</tr>
<tr>
<td>GDP per capita, USD a</td>
<td>860</td>
<td>960</td>
<td>1,153 b</td>
<td>2,780 b</td>
</tr>
<tr>
<td>Wireline phone lines per 100 inhabitants</td>
<td>1.4</td>
<td>2.7</td>
<td>8.3</td>
<td>12</td>
</tr>
<tr>
<td>Mobile phones per 100 inhabitants</td>
<td>0.9</td>
<td>4.6</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Internet users per 100 inhabitants</td>
<td></td>
<td>1.5</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

a. Constant 2008 2000 USD, b. GNI, USD per capita

However, differences in access to and adoption of wireline and mobile telephony have remained; the same is also occurring with broadband. There is often insufficient interest from the private sector to invest in broadband, even with government incentives, in rural and remote areas. Where market-oriented sector reform falls short of meeting all development needs, public sector support for the deployment, ownership and operation of a broadband network may be deemed necessary. This may be particularly true where governments, notably at the local and municipal level, regard broadband infrastructure as an essential public utility and its rollout as a public sector responsibility.

Thus, in each country, policymakers should determine if private sector-led broadband development in the context of market-oriented reform will achieve economic and social goals, or if more direct, targeted government intervention is necessary. Such an approach is reflected in the European Commission’s 2010 Communication on Broadband, which recognizes that, due to the critical role of broadband Internet access, broadband’s overall benefits to society appear to be much greater than the private incentives to invest in high-speed networks. As a result, stimulating investment beyond the current market-driven levels (while taking into account the recent economic downturn) is seen as key to achieving broadband goals. However, the Communication also specifically recognizes that where intervention is deemed necessary, it will be important to limit the government’s role as much as possible so as not to distort well-functioning market mechanisms or discourage private investment.

4.2.1 Levels of Access

Countries have adopted various strategies to enable and facilitate universal access to broadband services. Some countries, particularly developed countries with extensive existing wireline penetration,
have focused their broadband strategies on providing access to individual users, while other countries with less well-developed network infrastructure have looked more towards institutional and communal access for expanding broadband penetration.

Individual Users and Households

A number of countries, some of which are addressed below, have focused on providing broadband access for individual users and households, including through the extension of universal service definitions and universal service obligations. In certain instances, these are developed countries that implemented policies to facilitate the deployment of extensive infrastructure and ease the path to high broadband penetration. Therefore, it is more feasible for them to focus on individual users and households in terms of achieving universal broadband. Finland, for example, was the first country in Europe to include broadband Internet access in its definition of "universal service" and to make broadband a legal right for every citizen. Based on an amendment to the Finnish Communications Market Act, FICORA, the Finnish regulator, designated 26 telecommunications operators as universal service providers. This designation requires such operators to provide, within their operating area, broadband connectivity for consumers and business customers at their permanent place of residence or business with guaranteed connection speeds of at least one Mbit/s. Similarly, the Icelandic government required the country’s incumbent operator to guarantee broadband access to the 1,800 remaining unserved consumers in order to achieve universal broadband access.

In Denmark, Canada and Ireland, governments have focused on expanding universal access to households. In June 2010, Denmark announced an ambitious broadband goal of 100 Mbit/s or more for all households and enterprises by 2020. To achieve this goal, the Danish government stated that it would continue to pursue its market-based and technology-neutral approach focusing on the deployment of broadband infrastructure in Denmark. Measures to promote broadband have included those aimed at promoting competition in the access network and the rollout of wireless broadband to cover hard-to-reach areas. By the middle of 2009, out of 2.8 million households, fewer than 9,000 did not have access to a broadband connection, and by the end of 2010 all households had access to at least a 512 kbit/s broadband connection.

Canada’s 2009 Economic Action Plan provided Industry Canada with CAD 225 million over three years to extend broadband coverage, with the biggest component of this strategy being the Broadband Canada: Connecting Rural Canadians Program. The Program sought to extend broadband service to as many unserved and underserved Canadian households as possible, recognizing that since communities vary greatly in size, the fact that a community has broadband access does not always mean that service is available to individual households.

Ireland has attempted to ensure nationwide provision of broadband through its National Broadband Scheme (NBS) initiative. The NBS was a government project funded under the National Development Plan to provide broadband coverage to areas in Ireland in which broadband services were deemed to be insufficient. Under the scheme, users’ connections must be “always-on” and capable of 1 Mbit/s downloads and 128 kbit/s uploads. The lowest possible cap on downloads was defined as 10 GB per month, and the connections had to support virtual private networks and VoIP applications.

Communal and Institutional Access

Providing universal access to individual user and household levels may not always be possible, particularly in developing countries or even developed countries with significant rural or hard-to-reach areas. As a result, some countries have opted to give greater attention to communal or institutional solutions for providing broadband to end users, especially service to unserved or underserved areas.
These projects are often funded, at least in part, by resources from universal service funds. While traditionally these funds were used primarily or exclusively to support the deployment of telephony services, they have been expanded to support broadband deployment. In certain instances, these universal service funds are aimed at facilitating supply of broadband services and are often coupled with initiatives focused on generating demand for such services.

For example, in India, the Universal Service Obligation Fund (USOF) is used to support communal access by providing wireline broadband connectivity to rural and remote areas of the country from the existing rural wireline exchanges of Bharat Sanchar Nigam Ltd. (BSNL). BSNL provides one kiosk connected to each designated rural exchange, and the connectivity is subsidized by the USOF. The kiosk maintains a workstation with facilities to provide Internet browsing and support other broadband applications such as video chat, video conferencing, telemedicine and online learning.

Similarly, in Jamaica, the objective of the Universal Access Fund Co. Ltd. (UAF), established in 2005, is to accelerate the deployment of broadband through public access in high schools, public libraries, post offices and other government agencies/institutions. In April 2011, the UAF funded a JMD 543 million (USD 6.37 million) project with telecommunications companies LIME (Cable and Wireless) and FLOW (Columbus Communications) to build out a high-speed, island-wide broadband network, again focusing on all secondary schools, post offices, and public libraries in Jamaica.

Some countries take a hybrid approach by establishing a general universal access plan focused on connecting individuals or households while also targeting access at the community level. For example, the U.S. National Broadband Plan (NBP) generally seeks to ensure that 100 million U.S. homes have affordable access to actual download speeds of at least 100 Mbit/s and actual upload speeds of at least 50 Mbit/s by 2020. The NBP additionally seeks to ensure that every U.S. community has affordable broadband Internet access at speeds of at least 1 Gbit/s, highlighting the importance of using institutions (e.g., schools, libraries, and health clinics) as anchors for these local communities, as well as to deliver digital literacy, job training, continuing education, and entrepreneurship programs with support from government funds.

4.2.2 Universal Broadband Targets within the Broadband Strategy

Achieving universal broadband access is a challenge for all countries. In the case of developing economies, broadband is also seen as a key component to fostering growth and supporting the provision of a range of services to rural regions. To this end, countries are defining more comprehensive Universal Access and Service (UAS) strategies, and aiming to set universal broadband targets in the context of the country’s UAS and overall development strategy. As detailed in Box 4.1, the Dominican Republic’s e-Dominicana strategy focuses on the long-term promotion of universal access to ICTs, with the objective of ensuring that the country’s population develops the necessary skills to use ICTs through the creation of conditions, such as the availability of ICT resources and infrastructure at a reasonable distance from the place of residence and at affordable price levels. The strategy also puts particular emphasis on the link between the development of ICTs and sustainable economic growth and the development of human capital under conditions of social equity. In the United States, the NBP advocates an expanded funding commitment to the Community Connect program, which provides free Internet access to residents with the goal of facilitating economic development and enhancing educational and health care opportunities in rural communities. The European Commission, in line with the European Union’s common interests of territorial, social and economic cohesion, has indicated support for state financial support for the provision of broadband services in areas where broadband is currently not available and where there are no plans by private investors to roll out such infrastructure in the near future.
Chapter 4. Extending Universal Broadband Access and Use

Box 4.1. Rural Broadband Connectivity in the Dominican Republic

One of Indotel’s primary efforts in promoting broadband and the use of computers has been directed towards the installation of local community Informatics Training Centers (Centro de Capacitación en Informática (CCI)) and supplying them with computers since 2004. Indotel also provides the entire technical infrastructure including hardware, software and a backup electric supply system. By January 2009, more than 867 CCIs were in operation and 462 were in the process of being created.

In 2007, Indotel also launched the Rural Broadband Connectivity Project as part of the e-Dominicana strategy. The project’s objective is to bring residential, public telephones and broadband services to 508 localities that have no residential telephone connections or broadband Internet access and to provide broadband services through Internet cafés. This fits in with the objectives of the e-Dominicana strategy, which aims to: (i) provide broadband access to all Dominicans with a speed of at least 128 kbit/s within a radius of no more than five kilometers of their homes; (ii) achieve an Internet penetration of 40 percent of the population with at least 30 percent of the connections having a speed of 128 kbit/s or more; and (iii) achieve a penetration rate of personal computer users of at least 50 percent of the population. Indotel has funded the cost of these projects with resources from its USF.

Source: Adapted from Edwin San Román, Bringing broadband access to rural areas: a step by step approach for regulators, policymakers and universal access program administrators (2009).

As these examples show, it is becoming increasingly important for UAS policies and broadband policies to influence each other. UAS policies can promote the spread of broadband services and stimulate demand. Broadband policies can use a range of regulatory and fiscal options to reduce costs (e.g., international gateway liberalization) and facilitate broadband network investment, which, in turn, leads to better access at lower prices.

Although several countries have separate broadband and UAS policies (e.g., India, Jordan, Malaysia, Pakistan and South Africa), the boundaries between UAS and broadband policy are not as clear in other countries. Recent trends, however, show that policymakers are increasingly merging the two topics to accommodate universal broadband challenges. In all but the least developed countries, the concepts of UAS and universal broadband availability are now intrinsically linked. As shown in Box 4.2, Chile, for example, has a new Information Society Universal Access Policy. The new policy brings together Chile’s broadband policy and the UASF, and seeks to enable rural communities with productive potential to participate more effectively in the economy through innovation and increased competitiveness.

Box 4.2 Chile’s Digital Connectivity Plan

In 2010, the Chilean government launched a program to provide digital connectivity to 1,474 localities with about three million people in rural areas that lack access to the Internet. Households, businesses, schools, health centers and government offices will be able to connect to the Internet at 1 Mbit/s download and 512 kbit/s upload with service quality and prices similar to those prevailing in larger towns. The objective is to enable rural communities with productive potential to participate more effectively in the economy, through innovation and increased competitiveness. The program also seeks to increase the reach of the Internet among low-income rural population groups. The program will invest about USD 100 million, including a USD 43 million subsidy financed equally by the central government’s Fondo de Desarrollo de las Telecomunicaciones and the regional governments. Locations were selected based on demand expressed by local and regional authorities and civil society organizations, and also reflect development priorities in agriculture, SME and tourism. Costs were estimated with an engineering model using combinations of fiber and wireless technologies, including investment and operation and maintenance costs. Benefits reflected forecast revenues, and business
productivity gains and benefits from electronic government. This model underestimated total benefits, as the impact on education, employment and other externalities, while recognized, could not be quantified in monetary terms. Nonetheless, the program was estimated to yield a small, but positive, economic Net Present Value (NPV). The maximum subsidy was set at the equivalent of USD 63 million, which would make the financial NPV=0 thus rendering the program commercially viable. The actual subsidy needed was determined through open competitive bidding, with the eventual winning bid at USD 43 million. Implementation is underway and is due for completion in 2012.

A universal broadband policy should be a central part of the ICT framework and not construed as simply a result of corporate social responsibility, or acts of “goodwill” by investors in the ICT sector. Policies and measures should be formulated carefully, and universal broadband policies should be given a proper space in the national policy and legislative frameworks for development, as well as in the institutional framework for telecommunications regulation. Thus, it is important not only to set universal broadband targets in the context of the country’s UAS policy, but also to take account of the country’s overall development strategy. Universal broadband targets should further be developed based on the country’s short- and long-term goals for economic growth and broadband deployment. Development policies (e.g., e-education) should also consider telecommunications-specific regulations and policy goals, such as competitive parity between players.355

As illustrated in a World Bank study on Korea (Rep.), a key success factor for achieving widespread broadband access was the country’s holistic approach to defining and implementing numerous policy developments and initiatives, including policies to promote universal access to broadband. The Korean government’s approach to promoting ICTs in general and the broadband market in particular has been to formulate strategic development frameworks through the use of consecutive “master plans” that extend over a number of years. Through each framework, the government has outlined broad policy objectives and laid out a number of supporting policies. Notably, one of the key elements taken into consideration included the policies to promote universal access to broadband.356

4.3 Mechanisms to Drive Universal Broadband Access

4.3.1 Government Intervention

In many cases, broadband infrastructure projects are being led by the private sector with the government’s role focused on developing policies to encourage and facilitate these private sector initiatives. Within this context, countries have recently adopted more integrated strategies for developing and financing telecommunications services. This is particularly true in the case of universal access, and financing of large infrastructure projects, including projects to fund broadband, since implementation of such projects has generally been seen to require the involvement of both private sector financing and public authorities.

Policymakers have moved towards creating a multi-pronged approach to promoting universal broadband access. Such complementary strategies have been defined in addition to market liberalization and regulatory initiatives aimed at promoting broadband in general, as well as focusing on
universal access obligations or special conditions that favor projects in high-cost or low-income areas. Table 4.2 below shows some of the mechanisms defined as part of the Philippine UAS strategy.

Table 4.2 The Multi-Pronged UAS Strategy in the Philippines

<table>
<thead>
<tr>
<th>Strategy Type</th>
<th>Key Measures</th>
</tr>
</thead>
</table>
| 1. Implement improved regulations | • Key is spectrum & tower sharing
 • Will improve market efficiency
 • Increased broadband roll-out & extended coverage into rural areas due to reduced costs |
| 2. Stimulate demand (households & government) | • Key is household personal computer (PC) loan program & government demand aggregation
 • Will stimulate market
 • Increased broadband roll-out & extended coverage into rural areas due to more demand |
| 3. UAS Fund and competitive subsidy bids (for residual) | • Key is public Internet access & connectivity
 • Will address the access gap
 • Increased broadband roll-out & extended coverage into rural areas due to subsidies |

Examples of how other countries have introduced a mix of measures to promote universal broadband access include:

- **Canada:** While the Telecommunications Act of 1993 clearly recognizes the role of the private sector, it also calls for “reliable and affordable telecommunications services of high quality accessible to Canadians in both urban and rural areas in all regions of Canada.” In reality, policymakers recognize that the high cost of rural and remote broadband access requires public sector funding and initiatives to supplement reliance on market forces.357

- **Finland:** The government’s approach has relied on market competition to drive growth. Limited public financial intervention, however, has been implemented since the first definition of a National Broadband Strategy (NBS) in 2004 to achieve universal broadband access. The NBS provided that broadband access in sparsely populated and rural areas should be supported by Structural Funds from the EU and the national government. Since then, the NBS has been adapted, and allows for public sector intervention when necessary. The main objective of the December 2008 NBS for 2009-2015 was to ensure that more than 99 percent of the population in permanent places of residence, as well as businesses and public administration offices, are no further than two kilometers from a 100 Mbit/s fiber-optic or cable network. The government expects telecommunications operators to increase the rate of coverage to 94 percent by 2015, depending on market conditions, while public finances are being used to extend services to sparsely populated areas where commercial projects may not be viable, bringing coverage to the target of 99 percent.358

- **Peru:** Following the privatization of the state telecommunications enterprises in 1994 and opening the market to new entrants and competition in 1999, Peru’s telecommunications sector progressed dramatically from being the second least-developed in Latin America to about average for the region. The government has also played an important role in extending telecommunications services to places where they are not commercially viable. The Fondo de
Inversión en Telecomunicaciones (FITEL, Telecommunications Investment Fund) finances the provision of telecommunications services in rural and other priority development areas that do not have service. As shown in Box 4.3 below, the experience of FITEL in Peru suggests several lessons more widely applicable to broadband development.

Box 4.3 Lessons from Peru

In Peru, government has played an important role extending telecommunications services to places where they are not commercially viable on their own. Several lessons from the experience of Peru are more widely applicable to broadband development.

With a pro-competitive regulatory framework, the market on its own goes a long way towards rolling out broadband, but gaps are likely to develop between the more profitable areas and the rest of the country, and among income groups. In this situation, a telecommunications development fund (TDF) can successfully accelerate rollout and reach by leveraging private investment, focusing subsidies on clearly defined target population groups, and using the market to determine and allocate subsidies.

The private sector and the communities themselves respond vigorously to the opportunities presented by new technologies and demands. In Peru’s rural areas, some of the most creative initiatives to use wireless technologies came from agricultural associations, local communities and small entrepreneurs, rather than from established telecommunications companies. In urban areas, intense competition among numerous small informal shops offering public Internet access resulted in the number of Internet users rising quickly—well above what could have been expected in terms of the numbers of servers and connections. This has contributed to widespread dissemination of ICT throughout the population.

For new infrastructures and services to effectively contribute to development, it is also necessary to support the demand side. The FITEL-financed national broadband project includes developing content and building capacity among users and local entrepreneurs. Operators are expected to establish a portal in each community, with information on economic activities, tourist attractions and other material of local significance. The content will be updated by the community itself, with support from the operators. Funding for these activities, however, remains very limited.

A national broadband policy is needed to guide the scope and direction of efforts to extend new services ahead of or beyond the market. For many years, FITEL lacked such guidance. The choice of services to be supported, target population, and technical requirements were reasonable and generally responsive to changing technologies and demands, but appeared to lack consistency. For example, the required Internet speed varied among projects between 9.6 kbit/s and over 600 kbit/s. A commission to propose a national broadband policy aimed at affordable access countrywide was established in 2010.

A funding mechanism that allows collecting mandatory contributions and only later decides how to use them tends to disburse funds slowly and inefficiently. Between 1995 and 2008, FITEL spent slightly over 40 percent of the USD 279 million it had collected. At some point it had about USD 100 million in cash. For a period of five years, no new investments were approved. Partly this reflected lower subsidies requested by the bidders than had been expected. Slow processing through the public administration procurement system may have contributed as well. Changes in legal and administrative rules in 2006 helped move forward more expeditiously while emphasizing a transparent and competitive framework.
Government intervention is not just limited to the national level. Some countries have recognized that municipal entities also have the specialized skills necessary to build out networks, and may also have the long-term financing strategies that are attractive for new rollouts. In the United Kingdom, the government is taking a new approach to delivering connectivity in rural and hard-to-reach areas where the market is unlikely to provide service. Where local authorities have superfast broadband as a development priority, Broadband Delivery UK (BDUK) will work with the local government to coordinate projects and financing. Such collaboration will be the foundation for the government’s USD 859 million investment commitment until 2015. The French government has also given local authorities a greater role in developing broadband infrastructure. The Caisse des Dépots et Consignations (CDC, a government-owned bank) provides concessional loans to municipalities for broadband development.

4.3.2 Improve the Legal, Regulatory, and Business Environments

Address universal access and service challenges through policy and regulatory solutions

Before making public investments in rolling out broadband networks, governments should first look at regulatory tools that might be able to increase entry and competition, and hence maximize what the market can deliver on its own, including in unserved and underserved areas. This includes developing policies, regulations and practices, including privatization design, which go beyond the more traditional framework of simply imposing obligations on designated universal service providers. Such tools can create incentives for the private sector to extend universal access to broadband beyond what would deliver on its own.

In establishing the framework necessary to provide universal broadband access and service to rural populations, policymakers are introducing licensing regimes that will allow them the flexibility to take advantage of technological development and convergence. Operators are also expressing a preference for alternatives, such as accepting reasonable build-out targets in their licenses, or negotiating ex ante specific rural UAS targets with the regulator in exchange for relief from UASF levies or taxes. Countries have thus adapted their licensing regimes to achieve such targets. In Brazil, for example, Anatel established licensing provisions allowing operators to obtain additional authorizations after they fulfilled their universal service obligations (USOs). Brazil Telecom, which met its USOs by 2004, was granted the right to rollout additional mobile and long-distance call services in southern areas where it previously only had licenses for providing local services. In addition, Anatel is now pursuing broadband UAS targets, planning to connect all of its 5,600 municipalities with minimum broadband capacity, as well as creating and connecting 8,500 telecenters and 50,000 urban schools.

Within the context of defining a universal broadband strategy, it is also important to consider what other key legal, regulatory, and business environment constraints are holding back universal broadband development, and what government can do to overcome these constraints. If governments are to provide support to encourage the universal deployment of broadband, it should be done in a manner that guarantees equitable access for all.
In Sweden, for example, government policies require recipients of public funds to operate open access networks. Promoting such nondiscriminatory access might come more readily from municipal governments, many of which own and operate local networks.\(^{367}\) The Czech Republic has implemented legislation aimed at enabling the government to capitalize on the privatization of Český Telecom by putting one percent of the proceeds from the privatization into a fund that will be used to co-finance infrastructure projects for metropolitan and local networks. Conditions on receiving the funds include participation by the relevant regions and that the network operates under open access rules.\(^{368}\)

Revise the scope of universal access and service to include broadband

In many countries, the scope of UAS policies as a whole has traditionally focused on the provision of basic telephony, either to individual households or through communal or institutional access. As stated in a 2010 World Bank study, however, the availability of new, lower cost technologies allows countries to adopt more ambitious UAS policies without necessarily incurring higher costs or continuous subsidies.\(^{369}\)

In order to expand broadband connections to rural areas where they are currently unavailable, some countries are considering turning broadband into a USO and reforming their universal service policies. In numerous countries, the scope of UAS has evolved to include broadband. According to a 2011 ITU report, over 40 countries now include broadband in their universal service or universal access definitions.\(^{370}\) Some examples of countries that have revised the scope of their Universal Service Policies and USFs to include broadband:

- India was one of the first countries to include broadband in the UAS Fund in 2006. The UAS Fund allows for the support of broadband connectivity and mobile services in rural and remote areas of the country.
- In Morocco, the USF’s priorities were expanded through a revision to the law in 2004 to include rural public telephony, installation of community Internet centers and an increase of broadband capacity through various programs.\(^{371}\)
- The Swiss government decided that from January 1, 2008, universal service providers must provide a broadband connection to the whole population, via DSL, satellite or other technologies. Connections must offer at least 600 kbit/s downloads and 100 kbit/s uploads and the monthly subscription cannot be more than CHF 69 (USD 85).

4.3.3 Support Private Sector Network Buildout: Supply

Governments may adopt a range of instruments to accelerate the supply of broadband ahead of or beyond the market. These can include subsidies for investment; equity in public-private partnerships; facilitated access to rights of way; preferential tax treatment; long-term loans for investment in local currency; on-lending loans; credits or grants from international development organizations; and guarantees to offset regulatory or political risk. Under these models, investment in the sector, rather than short-term fiscal benefits, is treated as a major or primary consideration, ensuring a higher rate of investment over the long run.\(^{372}\)

The most common practice is for the government to contribute money when needed to ensure that important investments in rural development are commercially viable. This is done primarily by providing one-off subsidies for investment and start-up, focusing on unserved and underserved areas in particular. Alternatively, governments can contribute equity to private-public partnerships (PPPs) with similar objectives. For example, the government can help build broadband backbone networks that are then made accessible in equal terms to all interested downstream providers. When well designed, these
practices can mobilize substantial private sector investment, enable large projects that otherwise would not materialize, contain the cost and risk borne by the government and jump-start sustainable markets from which the government can exit quickly.

It may be possible to reduce the cost of broadband development by giving investors access to rights of way along railways or roads, on rooftops and in other public property. Absent alternative uses for these rights of way their opportunity cost to the public is negligible, and if they are made equally available to all interested parties it does not distort competition. Therefore, this may be a useful form to reduce total investment cost of broadband development.

Granting exceptional tax treatment is also sometimes considered. Good tax practice in general suggests that a particular economic activity should not be singled out for tax conditions that do not apply to all like activities throughout the economy. This means that taxes or duties that apply only to broadband should be phased out and, conversely, that exemptions from generally applicable obligations are best avoided. The Hungarian government, for example, took efforts to institute tax incentives to further the build out of broadband. Specifically, Hungary’s government grants a tax reduction of 50 percent on profits as a way to support the construction of broadband infrastructure. The concessions are available only to telecommunication companies if their expected profits exceed HUF 50 million (USD 250,000) and if they have invested at least HUF 100 million (USD 500,000). The tax allowance cannot be applied to ISPs if the infrastructure is built in areas where Internet service is already provided or where the investment does not contribute to the growth in infrastructure.\footnote{373}

Investment in new open and competitive networks, including broadband networks, can also be supported by the actions of national and local authorities in lowering costs. The European Commission’s 2009 Guidelines on the Application of State Aid Rules, for example, lay down the conditions for public financial support on non-market terms for broadband deployment in areas where commercial investments are unlikely to take place in the foreseeable future.\footnote{374} The main objective of the 2009 Guidelines is to assist the actions of national and local authorities. It is presented as part of the broadband package together with the two other broadband commitments made by the Commission in the Digital Agenda for fast and ultra fast Internet: the Next Generation Access (NGA) Recommendation to provide regulatory guidance to national regulators, and the Radio Spectrum Policy Program to improve the coordination and management of spectrum and hence facilitate, among other things, the growth of wireless broadband.\footnote{375} In the Guidelines, the Commission recognizes that broadband networks tend to cover only part of the population since they are generally more profitable to roll out where potential demand is higher and concentrated (i.e., in densely populated areas) rather than in areas with lesser population, specifically because of high fixed costs of investment and increased unit costs. The Commission makes a distinction in terms of acceptability of State intervention between 1) areas where no broadband infrastructure exists or is unlikely to be developed in the near term and where support is considered to promote territorial social and economic cohesion and address market failures (“white areas”); 2) areas where market failure or a cohesion problem may exist despite the existence of a network operator, thus requiring a more detailed analysis and careful compatibility assessment prior to allowing State intervention; and, 3) “black zones” which are defined as a given geographical zone where at least two broadband network providers are present and broadband services are provided under competitive conditions (facilities-based competition). In these “black zones,” the Commission does not consider there is a market failure and thus there is little scope for State intervention. In the absence of a clearly demonstrated market failure, State funding for the roll-out of an additional broadband infrastructure will not be accepted.\footnote{376}
4.4 Instruments of Fiscal Support for Universal Broadband Access

4.4.1 Subsidies as an Instrument of Fiscal Support

Subsidies are the most commonly used instrument to support universal broadband development ahead of or beyond the market. Subsidies are used extensively in the telecommunications, electricity, transportation, water supply, and sanitation sectors. If well designed, subsidies can be accurate and transparent and can effectively target the desired beneficiaries. Subsidies may be financed by government budgets, user surcharges, international grants, and other sources. A central agency or financial institution, a specialized fund, or other mechanism may be used to collect and distribute the subsidies.

The rationale for subsidies

Generally speaking, a subsidy exists when the costs incurred in supplying a service are not fully recovered from the revenues raised by selling this service. The economic rationale for a subsidy is based on the existence of consumption and production externalities, network externalities, and scale economies. Also, access to service at affordable prices may be considered essential for enabling the population to participate equitably and effectively in the modern economy.

In the context of market-oriented economic policies, subsidies are aimed at developing sustainable markets for the private provision of services. They are designed to turn investments that are desirable from the viewpoint of the economy at large, but are not profitable by themselves into commercially viable undertakings. Projects that are not demonstrably good for the economy at large or are ever likely to stand on their own do not justify subsidy and are rarely undertaken.

Good subsidy practice

Good subsidy practice in infrastructure projects commits all participants to contribute to financing the provision of the services:

- Service providers invest and risk their own resources to set up the facilities and provide the services during a given time under specific conditions.
- The government helps service providers meet some of their investment and start-up costs.
- Customers pay for the use of services at least as much as is needed to meet operating and maintenance costs. Where domestic installations are involved, customers are also required to pay part of the investment cost, as a confirmation of demand for service and commitment.

The design of subsidies is closely tied to the available service delivery mechanisms. Subsidies are channeled through the service supply chain in ways that aim at being neutral with respect to competition and service providers, service options, and technologies.

Competition for subsidies

Subsidies for broadband development are increasingly being determined and allocated among firms participating in a competitive public tender that is awarded to the firm that bids the least subsidy. This modality is sometimes referred to as “least-cost subsidies.” Compared with traditional public sector funding of investments, least-cost subsidies result in lower cost to the government, mobilization of substantial private investment, and enhanced transparency. Other forms of competition for subsidies include competition among projects proposed by communities or firms, competition among regional governments for central funds, and competition among sectors for a share of these funds. Implicit in all modalities is competition among technologies and business models to deliver these services.
Competition among firms for subsidies to provide infrastructure services through least-cost subsidies was pioneered in Chile in the mid-1990s for the provision of rural payphones. Since then it has become a recognized good practice in telecommunications and has also spread among upper-middle income countries and services that appeal most to private investors (telecommunications, electricity) and to lower-income countries and less attractive services (water and sanitation, transportation).

Competition among firms for subsidies is increasingly being used also to support broadband development programs, and is comprised of the following main steps:

- The government defines the broad objectives, target population, and levels of funding of the subsidy program. It also establishes key service conditions such as service quality, maximum prices, and duration of service commitments.

- Specific service needs and choices are primarily identified by prospective beneficiaries and communities. Economic, financial, and technical analysis is used to select and prioritize projects that are likely to be desirable from the viewpoint of the economy at large but are not commercially viable on their own, and to determine the maximum subsidy justified for each project.

- Private firms submit competitive bids for these projects. Subject to meeting service conditions and complying with rules that apply to all bidders, bidders are free to develop their business strategies, including choice of technology.

- Subsidies are awarded to the bidders that require the lowest one-time subsidies. Alternatively, bids are invited for fixed amounts of subsidies and awarded against other quantifiable measures, such as the lowest price to end users or the fastest roll-out of service.

- Subsidies are paid in full or in installments, linked to implementation of investments and start of service.

- Service providers own the facilities and bear all construction and commercial risks. No additional subsidies are available downstream for the same services.

- The government monitors and enforces service quality and pricing standards, protects users against arbitrary changes of service, and provides investors with stable rules of the game.

Box 4.4. Universal Service Subsidies in Mongolia

With the lowest population density in the world, Mongolia launched in 2006 two pilot programs, one to provide public access telephones for nomadic herders in 27 communities, the other to extend wireless Internet and voice service to one soum (rural administration center). To make these pilots commercially viable, it was estimated that subsidies of USD 5,100 to USD 6,200 would be needed per herder community and USD 63,000 to USD 73,400 for the soum. Mongolia’s regulatory authority conducted separate competitive bidding processes for each pilot. Each request for proposals specified the maximum allowable subsidy and included a draft service agreement, which specified how the subsidies would be paid out—linked to progress on construction and initial operation. Bidders were required to submit evidence of corporate and financial qualifications and experience in Mongolia. The bids were evaluated first on technical and operating compliance with the specifications. Those bids that passed were then evaluated on their requested subsidies. The bidder requesting the lowest subsidy was awarded the subsidy. Each tender attracted two bids from operators already active in the target markets. Three of the four were in substantial compliance. The networks in both pilots were implemented in September- November 2006 and were fully operational before the onset of the winter season. Both operators met targets for service availability and technical quality ahead of schedule.
Chapter 4. Extending Universal Broadband Access and Use

Source: Andrew Dymond, Sonja Oestmann, and Scott McConnell, Output-based Aid in Mongolia: Expanding telecommunications services to rural areas, OBAApproaches Note Number 18 (2008).

Success factors of competition for subsidies

Competition among firms for subsidies can be used effectively to help extend broadband development ahead of or beyond the market. Compared with traditional public sector infrastructure funding, competition among firms for subsidies can mobilize private investment, reduce government outlays to meet given policy objectives, promote cost-effective solutions and the emergence of new entrepreneurs, and enhance transparency.

But competition among firms for subsidies is likely to succeed only when certain critical factors are present. These factors relate to demand, supply, and the enabling environment. The experience from telecommunications and other infrastructure service sectors is likely to be relevant to broadband as well (see Table 4.3). Individual situations can be examined initially by reference to these factors. Whether the factors of success are in place or not can only be assessed case by case. A simple classification of countries and broadband projects cannot do justice to the complexity of the issues.

Table 4.3. Competition among Firms for Subsidies: Critical Success Factors

<table>
<thead>
<tr>
<th>Demand factors</th>
<th>Supply factors</th>
<th>Enabling environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users are able and willing to pay for services</td>
<td>Several firms are qualified to bid for subsidies</td>
<td>Elements of market-oriented legal and regulatory framework are in place</td>
</tr>
<tr>
<td>Service features are tailored to user needs and preferences</td>
<td>Business opportunities are aligned with operators’ strategies</td>
<td>Government has access to stable and reliable sources of subsidy finance</td>
</tr>
<tr>
<td>Services have considerable growth potential</td>
<td>Project components are cost-effectively packaged</td>
<td>Private investors have access to long term financing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Donors and different tiers of government are able to coordinate financing policies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Institutional capacity is in place to implement and manage a competitive subsidy mechanism</td>
</tr>
</tbody>
</table>

The demand side

Competition for subsidies to extend broadband ahead of or beyond the market is likely to work well only if users are willing to pay at least as much as is needed to keep the service running after initial investment and start-up. There is ample evidence that even low-income users, given the opportunity, spend a significant part of their income in communication services. In developing countries, about 10 to 20 percent of rural household income is spent on infrastructure services (e.g., communications, electricity, water and transportation). \(^{380}\) In some countries in Africa, rural households spend over five percent of their income in telecommunications. A survey in Nigeria found that about seven percent of household income was spent on mobile telephone service. \(^{381}\) These levels of expenditure on communication may suffice for the provision of communal broadband facilities (which aggregate the local population’s purchasing capacity) even in very poor localities, but the income threshold will be higher for individual household connections. For competition for subsidies to achieve its intended purposes, broadband service targets must be consistent with realistic estimates of the users’ willingness to pay.
Besides income, other factors influence the demand for rural infrastructure services. These factors include the location, information on options, ease of use and payment, and reliability of communal services, as well as hassle-free connection, low fixed periodic charges, easy control of expenditure, accurate billing, and prompt repair of household connections. Demand growth potential is a major determinant of sustainability. For example, some companies that provided subsidized rural payphones in Chile also offered individual telephone lines and Internet access to homes and small businesses on commercial terms using the subsidized infrastructure at marginal cost.\(^{382}\)

The supply side

The primary concern on the supply side is having enough qualified providers competing for the subsidies. Competition for subsidies works best when several firms compete for each subsidized project. In such situations, the lowest subsidy bid has typically been between one-third and one-half the maximum available with occasional zero-subsidy bids. When there is only one bidder for a project, bids have tended to be close to the maximum subsidy available. In that situation, the subsidy awarded is determined by the calculus of costs and benefits used to design the bidding process more than by the market, and errors of calculus become errors of investment.

The number of prospective bidders depends partly on how well the market for communication infrastructure services has already developed in the country. Whether eligible firms actually bid for the subsidies depends on the extent to which the projects offer attractive business opportunities that fit the firms’ overall business strategies. For example, ENTEL-Chile, one of the largest Chilean telecommunications companies, did not regard rural telephone service as a strategic business interest and never bid for the subsidies being offered from 1995 to 2000 despite the competitive advantage of its countrywide network and substantial presence in rural areas.\(^{383}\) Yet the same firm in 2008 bid for subsidies to roll out broadband, came in second, and eventually agreed to take on the project after the winner (which had requested zero subsidy) failed to firm up financing. Insufficient numbers of bidders may also result from lack of confidence in the regulatory regime, entry limitations still in place from earlier times (e.g., only one company authorized per region), or a process that is effectively competitive in its initial rounds but ends up with providers consolidating their markets on a regional basis.

There is still debate over the merits of offering exclusive operating rights to enhance the value of a business opportunity offered in an otherwise pro-competitive market environment. Exclusivity is generally no longer granted for the provision of telecommunications services, but the practice is mixed in other sectors. Exclusivity, besides running against market-oriented reform principles, is unlikely to add value to concessions or licenses in markets that operators are not prepared to serve on their own. Exclusive rights to subsidy, in contrast, make sense since the objective of the subsidy program is to extend service where none is available rather than promote competition in the market. Subsidizing demand rather than supply can reconcile both objectives.

How demand is aggregated into projects, and the extent to which this is left to individual bidders, may affect considerably their ability to compete. Bundling the provision of several infrastructure services may help spread out costs and attract more bidders.\(^{384}\) A bidding process that is simple, transparent, expeditious, and not unduly burdensome on the bidders also contributes to attracting bidders.

The environment

Competition for subsidies among firms is designed to be used to narrow gaps between the market and development needs, not to substitute for the market or to compensate for regulatory distortions of the market. It makes practical sense only when responsibility for service provision is with the private sector, new entry and competition are encouraged, and cross-subsidies within firms have largely been phased
out. A clear, stable and credible legal and regulatory and general business framework is needed for prospective service providers to make reasonable estimates of costs and revenues and assess the risks they are being asked to assume. Service providers are especially concerned about the rules and practices on competition, pricing, interconnection, and access to scarce resources within the sector, and on private ownership, foreign exchange, and taxation of businesses in general.

Competition for subsidies also requires access to financing by all key players. A major aspect of qualifying firms to bid for subsidies is their capacity to mobilize equity and debt financing for the components of investment and start-up that are not subsidized. This is not likely to be a problem when programs are large enough to be attractive to foreign investors, who have access to long-term financing in the international markets. However, smaller scale schemes targeted primarily at local operators may face difficulties if longer-term financing is not available through the domestic capital markets.

The government must have in place sustainable sources and transparent mechanisms to collect monies for and disburse the subsidies it is offering. In the telecommunications sector, the revenues often come from levies on sector revenues, or sometimes from the proceeds of spectrum or operating license auctions. Funding within the sector in this way, although second-best to funding from the government budget in terms of economic efficiency, fairness and fiscal discipline, can improve the reliability of access to subsidy resources. Governance of subsidy resources is critical. Even where sector funds are established, there have been instances of the resources remaining undisbursed or being diverted to meeting pressing fiscal needs.

A key challenge in implementing rural infrastructure delivery models based on competition for subsidy is coordinating strategies among donors and among different tiers of government. A concession of a private operator, premised on a partial investment subsidy and a financially self-sustaining operation over the medium-term, would be destroyed if within a couple of years a local municipality or a non-governmental organization (NGO) started to offer a free service in the same geographic area.

Institutional capacity is needed to establish and run a competitive subsidy system for rural infrastructure services. This includes originating and shepherding specific legislation and regulations, setting up and managing the financing mechanisms, designing and implementing the bidding processes, monitoring service development, and enforcing service commitments. In countries with well-established public administration traditions, a well-designed program of competition among firms for rural subsidies can be implemented by a rather small team of professional and support personnel.

Long-term sustainability of the model will depend on how well and realistically the risks have been apportioned among the players and the extent to which commitments can be enforced. Since subsidies are paid early in the project life cycle, should expected revenue streams later fail to materialize, the operator may face a sustained negative cash flow and prefer to close down. Service obligations and penalties for non-compliance may deter such behavior in some cases. Ultimately, even if construction and commercial risks are initially assumed entirely by the private operators, if they fail, the government may have no choice but to step in and take measures to maintain service, since that was its objective in the first place.

4.4.2 Sources of Funds to Support Broadband Development

Government programs

Because extending broadband ahead of and beyond the market is intended to benefit society at large, for reasons of both economic efficiency and equity, the first choice for financing support is the government budget. This can be done at different levels of government, such as central, state or
municipal governments. It may comprise direct use of funds from the government budgets, or use of funds from government programs aimed at addressing specific economic or regional development objectives.

For example, in 2002 the federal government of Canada launched the Broadband Rural and Northern Development Pilot (BRAND) to extend broadband to about 400 unserved localities, with priority given to disadvantaged First Nation, Inuit, and Métis communities. BRAND was implemented by Industry Canada. The total cost of BRAND was CAD 174 million, of which CAD 78 million (44.7 percent) was financed from Industry Canada’s budget. The rest was financed mainly by the firms that provided the services, community leaders, provincial and municipal governments, and other federal and provincial programs. Table 4.4 summarizes the sources of funds. BRAND brought broadband to 896 localities, more than double the number initially planned, without additional federal funding. During the same period, other federal, provincial, regional, and municipal programs connected about 1,100 additional localities. The number of rural communities without broadband access was thus roughly halved between 2001 and 2006. In 2009, the federal government allocated a further CAD 225 million to Broadband Canada, a new program to extend broadband to about 22 percent of rural households still without service or having only low-speed access. Additionally, several other federal and provincial development programs supported broadband projects.

Table 4.4. Canada: Broadband Rural and Northern Development Pilot, Sources of Funds, 2002-2006

<table>
<thead>
<tr>
<th>Sources of funds</th>
<th>Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAD million</td>
</tr>
<tr>
<td>Federal government</td>
<td>78.0</td>
</tr>
<tr>
<td>Other sources</td>
<td></td>
</tr>
<tr>
<td>Service providers</td>
<td>50.7</td>
</tr>
<tr>
<td>Community leaders</td>
<td>15.0</td>
</tr>
<tr>
<td>Provincial and municipal governments</td>
<td>16.0</td>
</tr>
<tr>
<td>Other federal or provincial programs</td>
<td>14.2</td>
</tr>
<tr>
<td>First Nations</td>
<td>0.2</td>
</tr>
<tr>
<td>Other</td>
<td>0.3</td>
</tr>
<tr>
<td>Total other sources</td>
<td>96.4</td>
</tr>
<tr>
<td>Total</td>
<td>174.3</td>
</tr>
</tbody>
</table>

Mandatory contributions

For reasons of economic efficiency and fairness, government financing through the budget is the preferred choice for fiscal support of broadband development. This, however, puts broadband in direct competition with other demands on the budget. It also subjects the broadband strategy to the uncertainties of annual budgetary appropriations.

An alternative is to raise the funds from mandatory contributions by telecommunications operators, which are generally placed in UASFs. Operators are generally willing to contribute reasonable amounts to such UASFs if the contributions and the management thereof are transparent, contributions are allocated fairly and operators are eligible to receive support financed by the proceeds of this contribution. This is essentially a tax, and although it is generated and used off-budget, it should be subject to the same considerations regarding economic justification of fiscal support discussed earlier. Since these levies are passed on by the operators to their customers, mandatory contributions by operators raises the question of fairness in which users of existing services, including low income users,
are required to help pay for a new service that will initially benefit mostly higher income and better educated groups. There is also some evidence that this practice has an overall negative impact on the economy as a whole.389

Where used, levies typically around two percent of gross revenues have sufficed to support programs to extend wireline telephone service to rural areas in developing countries. To spread the burden among as many customers as possible, eventually approximating the effect of a broad-based tax, in principle all operators should pay.390 Mandatory contributions are generally assessed in proportion to gross revenues, adjusted to avoid double counting (for example, to exclude payments received from other operators along the supply chain). Revenue information is easy to collect and audit, and this method results in customers paying markups that are proportional to their bills, much like a progressive tax.

International loans, credits, and grants

A number of international organizations support the development of communications services. The ITU provides technical assistance, training, standards and fora for policy and regulatory debate. Multilateral development banks, such as the World Bank and regional development banks for Africa, Asia, Europe and Latin America, have a long history of providing assistance to governments to extend communication services to localities where service provision was not commercially viable. Traditionally, this comprised financing rural components of national telecommunications development programs carried out by state enterprises. In the wake of sector reforms from the 1990s, emphasis shifted away from financing public sector investment to creating a policy and regulatory environment that enables private investment in increasingly competitive markets. More recently, the scope of support has widened from telecommunications to ICTs, from voice and data to broadband, and from reaching end users to building high-speed backbones connected to international networks. Multilateral development organizations that support private companies rather than governments, such as the International Finance Corporation, have also found a growing role in broadband development.391 Bilateral development agencies, such as the U.S. Agency for International Development (USAID), the UK Department for International development (DFID), and Japan International Cooperation Agency (JICA), have followed roughly similar trends.

Support from international development organizations for broadband development typically involves some combination of technical assistance, grants, loans and credits. Output-based aid (OBA), which links financial support to results, is increasingly used to accelerate or expand access to a range of basic services (such as infrastructure, health care and education) for the poor in developing countries.392 Well-designed OBA schemes sharpen the targeting of development outcomes, improve accountability for use of public resources and provide stronger incentives for efficiency and innovation. OBA schemes often use competition among firms for assigning cash subsidies. The Global Partnership on Output-Based Aid (GPOBA) comprises a group of donors and international organizations working together to support OBA approaches. GPOBA has funded telecommunications projects in Bolivia, Cambodia, Guatemala, Indonesia and Mongolia, as well as a study on new tools for universal service in Latin America and a study on ICTs in the Pacific. GPOBA provided a USD 5.5 million grant as seed money to establish a USF in Mongolia, which would collect a levy on telecommunications bills and use it to extend service to rural and nomadic areas that are not commercially viable on their own. Both GPOBA and the World Bank’s Private-Public Infrastructure Advisory Facility (PPIAF) provided grants for technical assistance to design the universal service program and set up the fund.393 Box 4.5 discusses the role that the International Development Association is playing in Africa.

Box 4.5. Regional Communications Infrastructure Program in East and Southern Africa

Credits from the International Development Association (IDA) totaling USD 164.5 million are financing
Chapter 4. Extending Universal Broadband Access and Use

4.4.3 Universal Access and Service Funds for Broadband Development

The financing of UAS has gone through various stages, ranging from cross-subsidies that finance non-profitable areas under a monopolistic scenario to the creation of UASFs financed by operator levies that support projects in more competitive markets. There is also a range of other solutions between these two points. Historically, first-generation fund projects have been primarily top-down (e.g., Colombia and Peru), with the fund defining the locations and requirements. However, in the last few years, bottom-up projects have been tried in Chile and other countries. In Sub-Saharan Africa, the tendency has been towards top-down projects, primarily allocated through competitive processes such as least-cost subsidy bids. Chapter 2 discusses mechanisms such as public private partnerships, local efforts and bottom-up networks and the following sections discuss the use of UASF to collect and disburse funds.

Over the last two decades, UASFs were created in many countries to finance network expansion. UASFs are being used in competitive markets to supplement market-based policies and address access gaps and market failures in remote and underserved locations. They are often seen as a competitively neutral solution for open market environments, where all operators in the market are obliged to share the responsibility (and the benefits) of providing universal access. This is also relevant to extending broadband ahead of and beyond the market.

Advocates of UASF state that where properly designed and implemented, and with sufficient internal resources and expert capacity, the UASF model has the potential to serve as a central “clearing house” within each given country for a variety of funding sources and development projects, to reduce inefficiencies and improve coordination across the spectrum of ICT development and financing initiatives. Some of the most successful experiences began during the 1990s in Latin American countries, such as Chile, Peru, and Colombia, where the UASF supported extensive deployment of public phones in rural and remote areas, and effectively strengthened the presence of rural operators.

More recently, they have expanded in countries such as Chile, where UASF cover Internet access and advanced ICT projects, including multi-purpose telecenters. The infoDev ICT Regulation Toolkit illustrates how so-called “second generation” UASF are today applying their resources to the financing of Internet Points of Presence (POPs) in rural districts, telecenters and cyber cafés, school connectivity and other ICT initiatives. Uganda is one of the first countries to establish a more comprehensive USF, and many of its latest UASF initiatives are through technology-neutral competitions, which are increasingly being won by mobile operators.

However, there are some legitimate and understandable concerns regarding UASF in many countries around the world, fuelled mostly by a few unfortunate examples of mismanagement and lack of...
transparency. Also, there have been concerns raised over the complexity of establishing and managing a UASF. Negotiating UAS contributions for all operators, which are viewed as equitable and accepted as fair, is not necessarily an easy feat.398

Brazil, for example, has struggled with its fund, the Fundo de Universalização dos Serviços de Telecomunicações (FUST). FUST was first established with the purpose of creating a financial resource that could complement the deployment of universal obligations of the wireline operators, but in reality the cost of expanding services is being borne directly by the operators. FUST’s most critical challenge is that it is not technologically neutral. It favors wireline service operators over other telecommunications providers as the funds can only be applied towards wireline service projects. However, all telecommunications service providers are required to contribute, thus indicating favoritism of one service over another.

Acknowledging that this is not the best approach for a funding mechanism, the Ministry of Communications carried out a public consultation in April 2008 on reforming the Brazilian telecommunications framework. In the consultation, the Ministry called attention to this fact and proposed that the FUST should be, at the very least, technology-neutral in its distribution mechanism. The Brazilian congress is presently considering a variety of other ways to distribute funds and to determine appropriate projects. Currently, there are various draft laws under consideration that if passed will amend the FUST regulations to allow the use of FUST monies for projects related to the increase of access to broadband services in Brazil.

Policymakers have also found that mechanisms need to be put in place to make UASF accessible to a wider range of telecommunications service providers. Limiting access to funds only to a specific category of licensee or to licensed operators, for example, can create barriers that continue to support existing conditions (i.e., the expansion of wireline networks to provide universal service/access) and discourage the implementation of new technologies to provide service in unserved or underserved areas. In Peru, telecommunications service providers with concession contracts for final public services (wireline, including pay phones, and mobile) and value-added services (data services including broadband Internet access) can access FITEL funds. If the entity requesting the funds does not have a concession contract for the area for which it is requesting the funds, then it must request the appropriate expansion of the concession contract from the Ministry of Transportation and Communications.399 Letting a variety of entities have access to UASFs allows countries to benefit from a greater number of possible resources to help it achieve its universal service goals. In addition, these resources can sometimes provide innovative solutions for small-scale projects that would not normally be considered profitable.400

In addition, the development and presentation of project proposals for UASF consideration should not be restricted only to the fund authority or to telecommunications providers, but instead should be open to all entities with an interest in contributing to the fulfillment of universal service/access. In Chile, project proposals can be presented by telecommunications service providers, regional/provincial/municipal authorities, universities, NGOs, neighborhood communities and others. Subsecretaría de Telecomunicaciones (SUBTEL), the entity responsible for administering and managing the country’s UASF, uses these project proposals to design and develop the fund’s annual project agenda.401 A system where multiple parties can submit project proposals allows all interested parties to contribute to achieving USO objectives. Having multiple sources for project proposals can provide a more realistic vision of the needs and conditions of the market, such as what type of service is required by localities and which technology is best suited, and are more likely to result in creative and resourceful project solutions. This has become even more relevant in a broadband context.
The UASF should not only support a country’s present universal service objectives, but also be able to adapt to the demands and trends of a converging telecommunications sector by fostering the use of new and innovative technologies to achieve future USO goals. A 2006 study undertaken for the Forum of Latin American Telecommunications Regulators (Regulatel) concluded that Latin American UASFs had played an important role in network development, and identified some of the challenges. The study makes specific recommendations for improving, streamlining or realigning the activities of Latin American UAS policies and UASF programs. Since universal access to telephony is, in the opinion of the study’s authors, close to being achieved in Latin America, a main feature of the study’s recommendations was to consider re-orienting UASFs towards supporting “ubiquitous deployment of advanced technologies and services.” The study advised that as the communications technology revolution continues, the new generation of UASFs could become leaders, not followers, in ensuring that populations have access to the most modern and effective networks, services, and applications available. This would include broadband, wireless, multi-service platforms permitting full access to all functions and features of telephony, Internet, data transmission, e-commerce, e-government, multimedia entertainment, and interactive communications. The new USAFs role in promoting broadband would be through support to intermediary facilities, such as backbones (including POPs), towers, and other passive infrastructure.

The study recognized, however, that a new generation of funds managed by public sector administrators is still unlikely to have the capacity to lead developments in the field of advanced technologies and services; instead, the private sector is likely to continue to be the leader in technology and service innovation and service expansion, which is in line with market-driven developments. Therefore, new UASFs may not lead, but by putting emphasis on broadband, can at least mirror in rural and underserviced areas what the market is achieving on its own in urban areas. New UASFs, once government has agreed on an aggressive broadband promotion policy, would not wait until a large portion of the population has access to broadband to start filling in the gaps, but rather act in parallel to the market while taking care not to subsidize areas that the market would serve on its own. As illustrated in Box 4.6 and Box 4.7 below, other examples from around the world also show the shifting focus of UASF.

Box 4.6. Reform of USF in the United States

In the United States, the FCC released a Notice of Proposed Rulemaking (NPRM) on the FCC’s efforts to transform the high-cost portion of the USF to support broadband, as well as to reform the intercarrier compensation system in a new CAF. The proposed reforms are based on four pillars:

- Modernizing USF and inter-carrier compensation to support broadband networks;
- Ensuring fiscal responsibility by controlling costs and constraining the size of the Fund;
- Demanding accountability from both USF recipients and the government itself;
- Enacting market-driven and incentive-based policies to maximize the impact of scarce program resources and the benefits to all consumers.

Box 4.7. Reform of RCDF in Uganda

In Uganda, the Rural Communications Development Fund (RCDF) was established in 2003 to support the development of a commercially viable communications infrastructure in rural Uganda, thereby promoting social, economic, and regional equity in the deployment of telephone, Internet, and postal services. To utilize the resources of the RCDF efficiently, subsidies are awarded through a competitive
process and are only available to geographical areas where service provision is not feasible or unlikely to be provided by operators within the next one to two years without subsidy. The RCDF mandates the provision of Internet points of presence and wireless access systems at district centers as well as National Internet exchange point (IXP) to facilitate inter-ISP traffic. The approach taken in the RCDF Internet POP program focused on the delivery of broadband services to districts with existing demand. RCDF took the approach that if such services are to be sustainable and viable, they should be deployed first where there are private and public clients ready to support them. Once the service was established in the more densely populated district centers, further deployment beyond their boundaries should be reviewed as demand and capacity becomes evident.

4.4.4 Best Practices for Effective Management of Flow of Funds

Whether funds flow through a UASF, or other public financing body such as PPPs or municipal-led projects, a number of key principles are applicable to ensure an effective management of the flow of funds to projects aimed at achieving universal broadband access.

- **Transparency**: Relates to the effective and transparent management of the flow of funds in accordance with the mandate of the entity managing the funds. Transparency of procedures can be enhanced through a manual or handbook for recipients of public financing, whether funding is through a UASF, a PPP or other financing mechanism. Such manuals generally set out the specific rules with respect to critical issues such as procurement, accounting standards, project selection criteria, technical partner selection criteria, tendering processes and procedures and disbursement procedures or participation rules in the case of a PPP.

- **Accountability**: Relates to the level and detail of reporting on activities and is aimed at ensuring transparency of operations. In general, accountability requires periodic reports to be provided to the relevant stakeholders, including the communities, with respect to the monitoring, evaluation and impact of the projects that are being undertaken. This will ensure both accountability and stakeholder and community awareness. In addition, there should also be a requirement for annual auditing—the funds and accounts of the USAF should be independently audited on an annual basis, and the audit results should be made public. Similarly, in the case of a specific project, the recipient of public financing (whether from a Fund or other source) should provide an audited report regularly on its progress and performance. And finally, there is generally the requirement for an Annual Report on the flow of funds.

- **Efficiency**: In order for funds to flow efficiently to promote broadband ahead of and beyond the market, a number of elements are required, including: an understanding of the environment and responsiveness to market realities; management autonomy allowing flexibility to adapt to market realities; sufficient financial resources to allow efficient selection of projects; adequate human resources and capacity to enable effective project implementation; quality of service targets and measures; monitoring, dispute resolution and, sanctioning powers; and evaluation and review mechanisms. An inefficient structure can be too slow in implementing projects, in which case the steps taken may be inappropriate, too late, or too expensive, amongst others.

4.4.5 Reviewing the Flow of Funds

National UAS programs should be reviewed in terms of strategy and management regularly. Such reviews should also be applied to the flow of funds to achieve broadband ahead of and beyond the
market, whether through the use of UASF, PPPs, or other funding mechanisms. Best practice indicates that such a review is carried out by an independent entity (with relevant expertise in the fields of UAS, project finance, and operational management). Where public funds are applied to move broadband access ahead of or beyond the market, a number of elements could be considered to evaluate the program, including:

- The achievements of specific targets as indicated in a UAS or NBP to move broadband ahead of and beyond the market and, if applicable, of the UASF against its objectives;
- The role of the commercial sector and of development or financing partners in contributing to the universal broadband implementation, including through PPPs;
- If applicable, the collections and disbursements of the UASF against projections and the costs and effectiveness of the UASF’s management and management structure;
- The impact and contribution of universal broadband projects and services on social diffusion and use of ICT services;
- The impact and contribution of universal broadband projects and services on the development of the country, including the impact on macro-economic situation, social development impact and impact on entrepreneurship and innovation;
- The impact and contribution of universal broadband projects and services on the development of infrastructure supply in the telecommunications sector;
- The strategic options for future development of the UAS program to further meet the objective of achieving universal broadband access;
- The financial requirements to meet these objectives, and recommendations with respect to future levies if applicable, fund raising and partnerships; and
- Other strategic recommendations regarding the direction of the program to move broadband ahead of and beyond the market and management of the Fund, if applicable.

The government can use the results of the review and its recommendations to guide future UAS and broadband policy, renewal and revision of its objectives or, where applicable, the mandate of the UASF.
Chapter 5. Technologies to Support Deployment of Broadband Infrastructure

5.1 Introduction

This chapter examines the building blocks for constructing broadband networks. It looks at high-speed connectivity from a hierarchical perspective, moving from international, to national, to metropolitan and finally to local access deployment solutions. The chapter describes the various wireline and wireless technologies for deploying broadband infrastructure, including examples of various deployments throughout the world; and discusses some of the issues associated with implementing these technologies. The focus is on the physical networks and the associated protocols for routing traffic rather than the end-user services and applications that are accessed over the networks, which are discussed in Chapter 6.

5.2 Overview of Broadband Networks

As policymakers develop plans and strategies for developing broadband networks, it is important to recognize that broadband networks have many component parts. All these parts must work together for the network to function effectively and efficiently. This Handbook categorizes these component parts into four hierarchical levels, which together comprise the broadband supply chain: international connectivity, the national backbone network, metropolitan access links and the local access network (see Figure 5.1). Besides physical connectivity, networks require traffic routing intelligence to ensure that information is correctly sent and received. This section describes the physical components of broadband networks and discusses the evolution of network intelligence based on IP routing.

5.2.1 The Broadband Supply Chain

The four main infrastructure components of the broadband supply chain are:

- **International connectivity:** Provides links to broadband networks in other countries usually via satellite and fiber optic cable. This requires network intelligence to exchange and route international Internet traffic.

- **National backbone network:** Provides pathways for transmitting Internet data across a country typically via microwave, satellite and fiber optic links. This also includes traffic management, exchange and routing as well as issues relating to enhancing efficiency and quality over Internet Protocol- (IP) networks such as Internet exchanges, metropolitan rings, and Next Generation Networks (NGNs).

- **Metropolitan/backhaul links:** Provides the connections between local areas and the national backbone network, usually via fiber optic links and microwave, and to a lesser extent, satellite. In a wireless network, these links are used to bring traffic from cell sites back to a switching center (“backhaul”).

- **Local access networks:** The wireline and wireless infrastructure that end users utilize to connect to the broadband network.

The boundaries between these network components are sometimes blurred. For example, Internet traffic exchanges route domestic traffic. However, they are also related to international traffic in that the exchange may be a peering point for an overseas network. Internet exchanges also reduce reliance on international connectivity by ensuring that domestic traffic is kept within the country. Metropolitan
ring networks provide a bridge between the domestic backbone network and the various local access networks. There are also regional implications in that one country’s national backbone could provide an international connectivity link for a neighboring landlocked country.

Figure 5.1. Broadband Supply Chain

![Diagram of broadband supply chain](image)

Note: Generalized typical infrastructure implementation and topology, excluding technologies not widely used.
Source: Telecommunications Management Group, Inc.

Two additional points should be noted. First, the different levels of the overall broadband network should ideally be in sync. High speeds at the local access network level can only be accomplished if the speeds and capacity in the national and international network segments are adequate to support them. Second, technology deployment is dependent on a country’s existing level of infrastructure. Countries without significant wireline infrastructure in the local access network may find it financially impractical to deploy ubiquitous wired networks, but they may be able to upgrade existing wireless networks. Similarly, countries often find it more financially attractive to leverage existing networks through upgrade/evolution as compared to deploying the latest state of the art technology by building completely new networks. Section 2.3.4 discusses the policy issues associated with each level of the broadband supply chain, while Section 3.5.2 discusses the legal and regulatory issues associated with the different levels.

Government involvement in the deployment of broadband networks has important repercussions, as addressed in this chapter. Most local access networks around the world use copper typically installed by formerly state-owned enterprises. While many countries leave the construction of broadband networks to the private sector, governments in other countries are guaranteeing bilateral or multilateral loans for the construction of backbone networks or are full or partial owners of wholesale or retail service providers. Governments may also play a pivotal role as a promoter for large projects such as international connectivity or national backbones where the private sector has been hesitant to invest. Even where the private sector has assumed the main role for investment in broadband networks,
Chapter 5. Technologies to Support Deployment of Broadband Infrastructure

governments remain influential through their decisions on spectrum allocation, rights of way and infrastructure sharing. In addition, governments themselves are important users of broadband.

5.2.2 The Transition to All-IP Networks
An important trend affecting broadband network development is the convergence of broadcasting, telecommunications, and information technology networks and services. Convergence has mainly proceeded through operators making incremental changes to upgrade their networks while minimizing large investment outlays. In some cases, this can lead to operators having to support an array of technologies. For example, wireless providers may support data solutions that include General Packet Radio Service (GPRS), Enhanced Data rates for GSM Evolution (EDGE), Wideband Code Division Multiple Access (W-CDMA), High Speed Packet Access (HSPA) and Long Term Evolution (LTE) simultaneously. In a very few cases, governments have sought to jumpstart broadband network development by sponsoring the development of a completely new network to replace legacy networks (e.g., Australia).

NGNs exploit the advantages of IP to packetize all information and route it to its destination. NGNs simplify network maintenance and operation by standardizing protocols with IP/Multiprotocol Label Switching (MPLS) at the core. In this architecture, common applications and services can be provided independently of the underlying physical transport network, making it easier for multiple providers to compete effectively in different parts of the broadband supply chain (see Figure 5.2). Many incumbent operators around the world are now converting their legacy networks to NGN.

Figure 5.2. IP NGN Design

For example, KPN, the incumbent operator in the Netherlands, was one of the first operators in the world to transition to an all-IP network in 2005 (see Figure 5.3). As part of the project, KPN’s backbone infrastructure was upgraded to fiber. Despite the ambitious plans, KPN has found the conversion to all-IP to be slower than expected. One reason is the high cost of fiber installation in the local access network. Nevertheless, by the end of 2010, over half of KPN’s access customers were IP-based, including almost half a million using triple play offers of VoIP, broadband and IPTV. An interesting aspect of KPN’s upgrade plan was that the transition to a much smaller number of IP exchanges allowed for the disposal of land and buildings made obsolete by the transition, which largely paid for the required investment with substantially lower future operating costs.

Figure 5.3. KPN Netherlands Transition to All-IP

5.3 Basic Technologies for Broadband Connectivity

This section examines the key technologies that are being used in the construction of today’s broadband networks. Although each of these technologies can be used throughout the supply chain, they tend to be used most heavily in the international, domestic backbone and metropolitan link segments. Each of these levels is discussed in more detail in sections 5.4, 5.5 and 5.6, respectively. The technologies that support wireline and wireless local access networks are discussed in section 5.7.

5.3.1 Fiber Optic

Much of the Internet’s content travels via fiber optic cables, particularly for long haul transmissions. Fiber optic cable provides closed circuit transmissions with very large bandwidth and at very high
transmission speeds. These two complementary features occur because these cables, made of thin coated glass strands, can transmit signals modulated over laser-generated beams of light. Rather than transmit using lower frequency radio waves, fiber optic cables operate at the frequencies of light where the spectrum is larger than in the radio frequencies (the visible spectrum contains more than 100,000 GHz), making it possible to carry large volumes of traffic at a rate of up to several hundred Gbit/s or even terabits per second (Tbit/s). Additionally, carriers can transmit traffic at several different frequencies using a technology called Dense Wave Division Multiplexing (DWDM). Multiplexing makes it possible for carriers to aggregate traffic onto a shared channel. Demultiplexing unpacks and separates the aggregated traffic back into separate transmission streams for delivery to intended recipients.

Because of the high expense incurred when installing cable across an ocean floor or buried underground, carriers deploying fiber optic cables typically install dozens of glass strands into one cable. Initially, not all of these individual fibers will be used; carriers can activate (“light”) individual strands as demand grows. Installed but unused “dark fiber” can be activated later, as required. In addition to installation costs, the comparative disadvantages in using fiber optic cables over copper lie primarily in the cost of the equipment and labor. While this technology can interconnect with existing copper networks, additional cross-connect switching equipment must be installed. Carriers with a large installed copper wire network may undertake a cost/benefit analysis and conclude that simply retrofitting and upgrading the existing network may help conserve capital in the short run. Carriers opting to upgrade will install replacement fiber optic cable first on backbone routes with high volumes of traffic. As demand for bandwidth grows, and investments can be justified, fiber progressively replaces copper cables throughout the network, reaching closer to the end-users.

At present, most backbone networks are fiber based, even in developing economies, and use of fiber in metropolitan and “middle mile” links is rapidly increasing as well, particularly in developed countries. As the demand for wireless broadband grows, there is also increasing use of fiber to provide backhaul from cell sites to mobile carriers switching facilities. Fiber penetration in the local access network is still very limited, even in developed countries. But the emerging trend, especially for building out new housing and commercial developments, is to install fiber from the outset. There are a number of deployment scenarios for fiber optic cable:

- International connectivity
 - International undersea networks
 - International terrestrial networks
- National backbones
 - National undersea networks
 - National overland backbone networks
- Metropolitan rings and cellular backhaul
- Subscriber access
 - Fiber to the premise

5.3.2 Satellite

In terms of the broadband supply chain, satellites are used primarily for international connectivity and some domestic backbones, and less frequently for metropolitan and local access networks. Geostationary communications satellites receive and transmit information from orbital slots located 35,786 kilometers (km) (22,282 miles) above the Earth. At this height, the satellite appears in a fixed location when viewed from Earth; this stable location is an advantage since subscriber satellite dishes do not need to move or track the satellite.
Satellites’ communication capabilities can be analogized to an invisible “boomerang” or “bent pipe” with signals transmitted (uplinked) to the satellite which then relays (downlinks) them back to Earth. Data is transmitted via the communications satellite’s transponders. Satellites usually have between 24 and 72 transponders, with a single transponder capable of handling up to 155 Mbit/s. Next-generation satellites will offer speeds in excess of 100 Gbit/s.

From a geosynchronous vantage point, satellites can transmit signals covering as much as one-third of the earth’s surface. This stable “footprint” coverage makes satellites an ideal medium for distributing TV and Internet content on both a single point-to-point basis and a point-to-multipoint basis. Today’s advanced satellites also make use of “spot beams” (principally in the Ka band) that allow higher power to be concentrated in specific regions to improve bandwidth and signal quality. These beams can also be steered or reconfigured to better match bandwidth to specific areas of demand.

A satellite network can be configured in a number of ways, ranging from a simple one-direction link to a more complex mesh network. Communications with the satellite take place via an earth station or individual antenna. The size of the antenna depends partially on the frequency being used and also impacts the volume of information that can be exchanged with the satellite. Large antennas are typically installed at earth stations for high bandwidth applications, while smaller antennas, such as Very Small Aperture Terminals (VSAT) or Direct-to-Home (DTH) dishes are used for applications such as lower bandwidth Internet access in rural areas or satellite television reception. It is estimated that there are around three million commercial VSATs for commercial and consumer use around the world with the majority supporting broadband Internet or high data-rate services.

Each communications satellite requires several hundred million dollars in investment to cover its construction, insurance, launch and tracking. They have a limited useable life (usually around 20 years) because operators cannot make repairs or add fuel to the propulsion motors to keep the satellite in proper orbit and pointed at the correct angle towards Earth. Additionally, satellites have comparatively less transmission capacity than terrestrial options, such as fiber optic cables. The large distance between the satellite and users on Earth also results in delays, known as latency, due to the time it takes for instructions to reach a satellite and content to arrive on Earth. Despite these limitations, satellites excel in their ability to distribute broadband content, such as television, to many locations, and are advantageous for different developing country characteristics such as archipelagos or difficult terrain as well as for emergency and disaster situations.

5.3.3 Microwave

“Microwave” systems are named for the wavelengths they use to communicate, and are generally implemented using frequencies between 6 GHz and 38 GHz. Microwave systems provide a point-to-point or point-to-multipoint broadband transmission option using very high frequencies that transmit a highly directional, pencil-thin beam of energy. Unlike satellite beams that cover thousands of square miles, microwave is usually used to transport broadband data signals from one specific location to another over relatively short distances (generally 40-70 km, depending on the frequency used). The installation of several microwave receiving and transmission facilities arranged in a chain are needed for longer links, with each transmission link known as a “hop.”

Microwave radio transmissions use antennas that concentrate radio energy to generate a naturally amplified signal. To achieve this signal gain, the very high frequencies of microwave—in the single or multiple GHz range—are concentrated using antennas shaped in a parabola. With advanced modulation, typical microwave networks can support up to 500 Mbit/s. In 2010, Ericsson demonstrated a microwave radio connection with a capacity of 2.5 Gbit/s. WiMAX is a specific type of microwave
standard that is designed for connecting end users, but can also be used for backbone connectivity at high costs. Ranges up to 120 km (75 miles) have been advertised with speeds up to 100 Mbit/s. Before the advent of fiber optic cables, microwave systems were a leading provider of backbone and metropolitan (long distance) connectivity. As fiber technology improved and costs fell, however, operators began to replace their microwave systems with fiber cables. This trend started on the highest volume traffic routes and continues to push into more local parts of the network. Today, microwave technology is used most extensively for point-to-point backhaul and last mile line-of-sight communications, especially when available CAPEX is limited. The main advantages of a microwave system are its relative immunity to interference, its straightforward deployment, and easy reconfiguration. Thus, it can be a practical alternative in some cases compared to the cost and logistics of laying cable. The main drawbacks are that it requires line-of-sight and the transmission capacity may be too limited for heavy broadband uses.

5.3.4 Copper
Another terrestrial technology still in use for long haul transmission is copper wire. While fiber optic cable will eventually replace legacy copper, replacement costs create financial incentives to use and upgrade existing networking technology. Copper wire offers significantly less channel capacity and commensurately slower bit transmission speeds than other media, but it can often suffice for low traffic routes. Even in developed nations, backbone fiber optic routes may exist only for links between major cities, with copper wire links still serving smaller towns and rural areas. A recent issue with copper cabling is theft, due to the high price of copper.

5.4 International Connectivity
The Internet is an international “network of networks.” In order to provide the physical connections between widely separated broadband resources and consumers, countries must establish international links (gateways) to connect to the world’s Internet and telephone networks. The technologies providing long haul transmission, such as fiber optic cable and satellites, typically have very high investment costs. While initial “sunk” costs are high, they have very low incremental costs to accommodate additional users. These technologies also enable carriers to activate additional capacity on an incremental, graduated basis as demand grows.

5.4.1 International Links
The vast majority of international telecommunications traffic is carried by undersea cable systems—more than 95 percent according to some estimates. This reflects the advantages of fiber optic cable in terms of bandwidth and latency compared to satellite. Undersea fiber optic cables can transmit data at speeds measured in Tbit/s, while even the newest communications satellites offer speeds below 1 Gbit/s as well as higher latency. As of early 2011, there were more than 120 major submarine cable systems, with another 25 planned to enter service by 2015. Submarine cables are quite expensive to deploy, with costs that routinely reach into hundreds of millions of U.S. dollars. As such, many are financed by consortiums of operators rather than a single investor. For example, the Eastern Africa Submarine Cable System (EASSy) has landing points in nine countries and connects to several additional landlocked countries and is funded by 16 African and international shareholders, all of whom are telecommunications operators and service providers.

While undersea fiber optic cables may be the preferred option for international connectivity, it is not a viable option for some countries and operators. Landlocked countries, for example, do not have direct access to the sea and thus are constrained in their ability to fully exploit submarine technology. Transit
costs to tap into an undersea cable can be significant (national and regional fiber backbones may not be available to tap into the undersea cable), but this is becoming less of an issue over time as landlocked countries complete some type of fiber connection to the international cables through neighboring countries. Landlocked countries may be able to negotiate a virtual coastline so that they own and operate a cable landing station in a neighboring country’s territory but otherwise depend on the neighboring country to provide reliable and reasonable prices for transit. Many SIDS, mainly in the Pacific Ocean, are distant from undersea fiber routes and the economics of connecting to undersea cable are problematic. Regulatory restrictions or high costs may restrict service providers from accessing undersea cables. These factors tend to encourage the use of satellite connectivity. Another issue is that even where countries have access to undersea cable, they still may want to deploy satellite as a backup to ensure redundancy.

Service providers need to contract physical international connections in order to support their end-user broadband requirements. They either do so through participation in ownership consortiums of the physical facilities or by leasing connectivity through wholesale operators. A relatively small number of ISPs have the financial resources needed to directly invest in capacity in international backbone broadband networks, so most lease capacity from larger international operators. This can present a number of business and regulatory challenges, including:

- **Monopoly or dominant control of international backbone routes.** Physical backbone networks are generally owned by a few operators or consortiums. The restricted ownership can be a barrier for non-affiliated ISPs that need international connectivity.

- **Monopoly or dominant control of international landing points.** Ownership of landing stations for undersea cable and satellite earth stations are generally controlled by a few entities. Even if an ISP has successfully contracted for capacity on a fiber optic cable or satellite transponder, it may be constrained in its ability to connect that capacity to its domestic backbone network. For example, a service provider may lease capacity on a satellite transponder, but may have to come to a separate agreement with the owner/operator of the international gateway that receives the satellite’s transmission.

The potential for international connectivity to be a bottleneck in the development of broadband connectivity cannot be overstated. Submarine cables connect to domestic backhaul networks at a cable termination station, which is—but may not be—the same facility as the cable landing station (i.e., where the cable makes landfall). Because all operators in a market, particularly new entrants, may not have the resources to own and operate a cable landing station, the owners of such stations, generally the incumbent operators in newly liberalized markets, may be required to provide access to the station, and therefore to the cable, on reasonable terms to competing service providers. Limited access to landing stations can have a chilling effect on the diffusion and take-up of broadband services. Conversely, limited opportunities or burdensome regulations related to cable landing can discourage interest in that market among cable operators, again creating a connectivity bottleneck. Governments and regulators may need to implement competitive policies with respect to issues such as submarine cable landing stations, open access, and infrastructure sharing to eliminate such bottlenecks (see section 3.5.3).

In Singapore, for example, the single cable landing station was owned by the incumbent operator at the time of market liberalization. Singapore’s regulator undertook two parallel approaches to improve international connectivity. The Infocomm Development Authority (IDA) required the incumbent operator to offer collocation in its submarine cable landing station to alternative operators, and later imposing connection at regulated prices and allowing alternative operators access to the capacity of submarine cables on behalf of a third party. In addition, the IDA streamlined the administrative
procedures for submarine cable companies to obtain landing permits and authorizations in Singapore. As a result of these and other related actions, prices of international leased circuit rates in Singapore decreased 95 percent, total submarine cable bandwidth capacity increased from 53 Gbit/s in 1999 to 28,000 Gbit/s in 2007, and broadband penetration reached 77 percent of households in 2007.

5.4.2 Internet Links

Whether via fiber optic cable or satellite, securing physical international links is only the first step in procuring international Internet connectivity. ISPs also need to arrange for exchanging and routing their traffic. Such arrangements ensure that Internet traffic can be delivered anywhere in the world, eliminating the need to have physical connections to every country. An ISP will typically arrange to hand off its traffic at the points where its contracted physical connectivity terminates. Such arrangements are usually of two kinds:

- A **peering** arrangement is where two ISPs freely exchange Internet traffic. The peering requirements of large ISPs often exceed the capability of smaller ISPs. For example, in order for an ISP operating in the Asia-Pacific region to peer with Sweden’s TeliaSonera, it would have to provide traffic equaling at least 500 Mbit/s and the ratio of inbound and outbound traffic exchanged between the ISP and TeliaSonera cannot exceed 3:1.\(^{421}\)

- A **transit** arrangement is where a small ISP pays a large ISP to provide Internet traffic exchange. The fee is generally a function of the traffic or physical connection. Smaller ISPs generally make transit agreements with global IP carriers that can guarantee their Internet traffic will get routed anywhere in the world. Global IP carriers with worldwide IP networks are often referred to as “Tier 1” carriers, with the distinguishing characteristic that they do not generally pay any transit fees and have the capability to reach all networks connected to the Internet.\(^{422}\)

While large global carriers from developed countries operate most of the Tier 1 networks, carriers from developing countries are starting to emerge as significant players. India’s Tata Communications, for example, operates a global network that makes it the world’s largest, farthest-reaching, wholesale Internet transit provider. It provides Internet connectivity to over 150 countries across six continents with speeds up to 10 Gbit/s.\(^{423}\)

Tata’s reach and Internet routing can be illustrated by running a trace route from a broadband subscriber in Washington D.C. accessing a web site in Gaborone, Botswana. Once the packet reaches the west coast of the United States, it is turned over to Tata for delivery to Botswana over physical connections transiting Singapore, India, and Johannesburg, South Africa (Figure 5.).
Chapter 5. Technologies to Support Deployment of Broadband Infrastructure

5.4.3 Implementation Issues for International Connectivity

The huge costs of deploying undersea fiber optic and satellite networks present a challenge for many developing countries and ISPs. Capacity on these networks tends to be owned by a few carriers and wholesale arrangements are not always optimum for smaller players. Likewise, a few global IP carriers dominate wholesale access to the Internet and smaller ISPs are forced to pay one-way interconnection charges. Land-locked countries face special problems since they lack coastal regions that could support a landing station for undersea cable, while SIDS face a connectivity challenge since they are distant from undersea cables and lack large markets. In countries with just one physical international link, access and pricing can become an issue, particularly if the operator of the gateway is also a provider in other parts of the supply chain and has an incentive to restrict competition or demand high payments.

Countries are exploring various ways to overcome the challenges of international connectivity, including:

- **Forming Public/Private Partnerships (PPPs) to establish direct international links.** The high cost of connecting to international networks may be insurmountable for smaller service providers. In Kenya, the government took the lead to procure an undersea fiber connection through an agreement to construct a cable to the United Arab Emirates by enlisting service providers to take a shareholding in The East Africa Marine System (TEAMS) cable.424

- **Establishing points of presence (POP) in major Internet hubs.** This can be cheaper than paying transit fees. Sri Lanka Telecom established a subsidiary in Hong Kong, China and acquired domestic and international voice and data services licenses allowing it to offer undersea fiber optic cable capacity services from Hong Kong to Asia, Europe, and North America.425

- **Enhancing cross-border cooperation.** It is critical for landlocked countries to coordinate and establish partnerships in order to ensure end-to-end connectivity to undersea land stations. In Uganda, the ISP Infocom leased fiber capacity from the country’s electrical utility allowing it to
create a fiber backbone to the Kenyan border. From there, Infocom has arranged with Kenya Data Networks (KDN) to transport Ugandan Internet traffic to a new undersea fiber optic cable landing in Mombasa using KDN’s national backbone.

- **Improving redundancy and competition.** Countries should establish varied international connections to enhance redundancy if one link fails and to enhance competition among international gateway operators. When different service providers offer additional connections, wholesale international bandwidth competition also increases and prices generally fall. Even a small country like the Maldives, where it was initially believed that even one connection to an undersea fiber optic cable would be prohibitively expensive, has found that an open telecommunications market with a liberal international gateway license regime can motivate operators to invest in high quality connectivity. The Maldives now has two links to undersea fiber optic cable systems (see Box 5.1).

- **Creating Internet Exchange Points (IXPs) close to data servers and international bandwidth.** By establishing its own IXP, a country can reduce expensive international traffic by keeping local traffic local and by attracting leading global content providers. For example, Google has a liberal peering policy and has established POPs in a number of locations including recently in South Africa at the Cape Town Internet Exchange (see section 5.5.2).

Box 5.1. Connecting the Maldives to the International Submarine Cable Network

<table>
<thead>
<tr>
<th>Like most small countries, the Maldives has been relying on satellite technology to connect to the outside world. The main reason is the cost-effectiveness of satellite as compared to fiber cable for the level of international traffic generated by this small country. Global submarine optical fiber cable networks like SE-ME-WE (South East Asia-Middle East-West Europe) have passed the Maldives, but the high cost of joining these cable consortiums prevented the country from reaping the technical benefits of optical fiber technology.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Although satellite technology was sufficient in the past when voice telephony was the driver of international communications, the bandwidth consumed by data applications has surpassed the bandwidth usage of voice. In 2005, the government decided that it was economically feasible to install an optical fiber system and a consortium was established among three service providers—Wataniya Telecom Maldives, Focus Infocom Maldives and Reliance Infocom of India. The consortium, WARF Telecom International, brought the first fiber into the country in October 2006, which connects the Maldives to the Falcon Network at a node in Trivandrum, India. In early November, Dhiraagu brought in a cable connecting the Maldives to Colombo, Sri Lanka.</td>
</tr>
</tbody>
</table>

5.5 Domestic Backbone

Backbone networks are a critical component of the broadband supply chain. They consist of very high speed, very high capacity links that connect the major nodes of the network—often the major cities of a country. These links need to have large capacities because their function is to aggregate traffic from the different areas of the country and then carry it on to the next node or city. Although the comparison is not perfect, broadband backbone networks serve an analogous function to a country’s highways—allowing fast connections between source and destination. Figure 5. shows how backbone networks have been deployed in Botswana.
In developed countries and liberalized telecommunications markets, there may be more than one backbone network. Competing firms, for example, often lay fiber cables across a country to compete with incumbent long distance carriers. This is not usually the case in developing countries, where voice and data traffic demands have not historically required such high capacity links. Recently, however, developing countries have been promoting the development of high capacity domestic backbones as part of a broader effort to develop regional fiber networks. In Zimbabwe, for example, incumbent TelOne announced in March 2011 it had connected a fiber link to the EASSy system through Mozambique. The link is the first phase of a planned national backbone rollout that will also include the Harare–Bulawayo–Beitbridge and Harare–Chirundu routes.

It may not be necessary for each operator to have a backbone network that covers the entire country. An operator may have an extensive network covering part of a country, but not others. Operators can interconnect their respective networks in order to use the backbone network of another through the purchase of backbone network services or interconnection agreements. In many developed countries, the owners of the backbone networks and elements of the market are consolidated into a few large companies with very high capacity networks, while the downstream components tend to be smaller and more geographically disaggregated. But this is not always the case; in many countries, especially those that have only recently liberalized their markets, there may still be one dominant provider that controls both the backbone and downstream (metropolitan and local access) networks.

The economic impact of backbone networks lies in their ability to reduce costs by spreading them over higher volumes of traffic. However, this benefit is highly dependent on the market situation in a given country. In the case of Nigeria, for example, one of the reasons that the incumbent operator historically has been able to maintain high wholesale prices for backbone services is the lack of effective competition in the backbone services market. This is a pattern seen in throughout Sub-Saharan Africa.
and in other parts of the world where neither competition nor regulation has effectively controlled wholesale prices. Conversely, all broadband providers benefit where there is competition and the backbone is open and interconnected to multiple downstream providers, particularly for smaller players who can buy network services at reasonable prices rather than build their own end-to-end networks.

Countries face several challenges in deploying national backbone networks. One is to ensure high-speed links throughout the country to minimize the broadband divide. Because each country has unique geographic (size, terrain, etc.) and demographic features, each will have to pick those technologies that best fit their situation. As a result, there will be different mixes of technologies employed and private investor and policymakers will need to examine tradeoffs between bandwidth needs, CAPEX, operating expenses (OPEX), upgradeability and regulatory impacts, among others.

5.5.1 National Links

The choice of a national backbone strategy is highly dependent on a country’s size and topography, regulatory environment and broadband market size. In reviewing the different technologies it is important to bear in mind that the selection of the appropriate backbone connectivity option often depends on the distance to be covered and the forecasted capacity requirements (See Table 5.1).

Table 5.1. Optimum Backbone Technology Choice

<table>
<thead>
<tr>
<th>Distance</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 8 Mbit/s</td>
</tr>
<tr>
<td><100 km</td>
<td>Satellite / Microwave</td>
</tr>
<tr>
<td>> 100 km</td>
<td>Satellite</td>
</tr>
</tbody>
</table>

*Source: Mark Williams, *Broadband for Africa: Developing Backbone Communications Networks*, World Bank, p. 18 (2010).*

Fiber optic cable is typically perceived as the optimum solution for national backbone connectivity given its high capacity and upgradeability. Almost every operator in the world is upgrading its network backbone to install fiber, though the extent and pace vary. Some operators have fully fiber backbones with other technologies kept for redundancy while others may have only a few kilometers of fiber for high traffic routes, supplemented by satellite, microwave or even copper cables.

Satellite is employed in a number of countries to provide national as well as international backbone connectivity. Some countries have launched their own satellites to ensure coverage while in other countries, operators lease capacity from satellite operators. Satellite is a particularly attractive solution for providing connectivity to remote areas where the cost of terrestrial solutions can be high. They are not, however, an ideal solution for short, high traffic routes.

Microwave remains a domestic backbone legacy solution in many countries. It is less expensive (though OPEX may be higher compared to other solutions) to deploy than fiber optic or satellite. Though capacity is less than fiber optic, current traffic demands may not be high enough to justify switching from microwave. Rights of way and space constraints are also less of an issue with microwave.

5.5.2 Internet Exchanges

In addition to the physical infrastructure needed to transmit broadband traffic, national broadband traffic needs to be routed and exchanged using Internet protocols. One key issue here is Internet exchanges. Internet exchanges provide a venue for transferring traffic between different ISPs that can help reduce the cost of international connectivity. An Internet exchange can also connect to local data centers featuring content and applications reducing the need for international connectivity.
The economic rationale to establish an IXP is based on the trade-off between the cost of the physical connection to the IXP and the cost of an international connection to process the local traffic. There are two main models for implementing an IXP (Figure 5.). With a Layer 2 IXP, each ISP provides its own router and traffic is exchanged via an Ethernet switch. With a Layer 3 IXP, traffic is exchanged between members through a single router. ISPs make a physical connection to the IXP typically using a bandwidth of between 100 Mbit/s to 1 Gbit/s. In addition to the cost of the physical connection into the IXP, ISPs usually pay a joining fee plus a monthly fee that is sometimes based on the size of the connection or the volume of traffic.

Figure 5.6. IXP Models:

There are several administrative models for IXPs. One of the most common is where a group of ISPs operate the IXP, typically through some kind of association. Another model is commercial, where an unaffiliated third party (e.g., not an ISP) provides IXP services. In some countries, non-profit organizations operate IXPs for government or educational Internet traffic. There are also cases where large ISPs operate Internet traffic exchange points, which often involve the large ISP charging for transit. Large ISPs have also been known to disrupt an IXP’s effectiveness by either not participating or under provisioning their link to the IXP. Countries might consider facilitating the development of IXPs and providing support, or appropriate regulation to help to overcome resistance to their establishment and effective operation. In Chile, for example, the government requires all ISPs to interconnect.

Where competitively priced international fiber optic connectivity is available, an IXP can attract international participants such as foreign ISPs and major content companies. This can lower the cost of international connectivity through peering with foreign ISPs as well as the potential for storing heavily accessed content locally. For example, Google participates in a number of IXPs through its Global Cache service that stores its applications and content, such as YouTube, closer to the end-user.

5.5.3 Implementation Issues for Domestic Backbone Networks

As countries build out backbone networks, a number of issues must be considered. For example, the initial fixed costs are significant. A study by the OECD, for example, concluded that around 68 percent of the costs in the first year of rolling out a fiber network to the premises are in the civil works associated with the digging of trenches and the installation of cables. In countries with large physical distances to cover, this fixed cost may be substantial and difficult to justify when demand is uncertain. The risk
associated with the high upfront costs of fiber backbones can be alleviated through various mechanisms such as risk guarantees and demand aggregation.

The average cost of a backbone network (i.e., the unit cost per subscriber) also varies enormously depending on the subscribers’ geographical location. In urban areas, where subscribers are concentrated, the average cost of backbone networks is much lower than in smaller towns or rural areas. In practice, the ability of a backbone network to reduce costs is one of the key determinants of the financial viability of providing broadband services. The absence of a backbone network in a particular area of a country to aggregate traffic and thereby reduce costs may mean that broadband services are unlikely to be commercially viable. In such instances, policymakers and network planners will need to agree on which cities and towns should be connected and over what period of time the work can be accomplished.

The high cost of installing backbone networks in developing countries has often resulted in incomplete national coverage, with operators deploying microwave networks on some routes. A single fiber optic network with wider coverage is often a more optimum solution, and is can be as cost effective. An analysis for Nigeria found that a single high-capacity backbone had significantly lower costs than traffic carried over multiple low-capacity networks. However, operators in many countries have generally not been very cooperative in sharing backbone networks. Governments are overcoming such resistance through a number of arrangements for deploying fiber optic backbone networks:

- **Borrowing from multi- and bi-lateral agencies**: Developing countries unable to afford the immediate cost of deploying national fiber optic backbone networks have been turning to development agencies and bilateral development partners for funding. This is the case, for instance, in Uganda, which borrowed from the China Export and Import Bank (EXIM) for construction of its National Data Transmission Backbone Infrastructure.

- **Existing operator building out network**: Current service providers can be incentivized to extend their backbones and offer cost-based wholesale connectivity. This is the case in Sri Lanka, where the government decided to work with the incumbent to extend its fiber optic network rather than to build its National Backbone Network from scratch. In Pakistan, the Universal Service Fund (USF) is used to subsidize the cost of fiber optic rollout to rural areas. Awards from the fund will extend some 8,413 km of fiber optic cable to underserved locations.

- **Leveraging electrical utilities and railways**: Companies in other infrastructure sectors such as electricity and railways have large fiber optic networks running along grids or railroad tracks. National connectivity can be enhanced by facilitating telecommunications regulations that allow electricity providers and railways to act as wholesale bandwidth providers. Kenya Power & Lighting Company Limited (KPLC), an electrical utility, is leasing dark fiber running along its backbone to service providers. In Norway, the fiber backbone of Ventelo spans the entire railway infrastructure, covering 17,000 km. Ventelo is the second largest wholesale provider in Norway offering dark fiber and collocation services.

- **Open Access**: Despite the general benefits of competition, it may be inefficient in some areas to have competing backbone networks. In such cases, a single network can be built, but protections must be put in place to ensure competition among service providers, including non-discriminatory access for all downstream providers. Singapore, for example, has imposed structural separation for the deployment of its Next Generation Nationwide Broadband Network (Next Gen NBN) in an effort to minimize infrastructure duplication, increase wholesale transparency, and promote retail competition for the benefit of consumers.
Chapter 5. Technologies to Support Deployment of Broadband Infrastructure

5.6 Metropolitan Connectivity

Beyond network backbones, connectivity is needed to connect smaller towns and villages to the backbone and provide links in and around metropolitan areas. These links are sometimes called the “middle mile.” Such links can be provided by satellite, microwave, or fiber optic cables, with the latter becoming increasingly common due to capacity benefits. Metropolitan area networks are often established for high traffic locations such as major cities by routing traffic along high capacity fiber optic rings. This part of the broadband supply chain also includes those links used to transport traffic from distant points, such as a wireless base station, to an aggregation point in the network, such as a mobile telephone switching office or other network node. This particular function in wireless terms is often referred to as “backhaul” (i.e., hauling traffic back to the network).

5.6.1 Regional/Metropolitan Links

In many cases, as governments develop policies to encourage backbone development or the roll-out of local access networks, the metropolitan portion of the broadband supply chain can be forgotten. But building out the two ends of the network—backbone and last mile—will be ineffective unless there is the capacity in the middle to tie all the pieces together. Hence, policies to address middle mile and backhaul problems, such as promotion of facilities-based competition or open access requirements, are just as important as the other parts of the network.

Metropolitan ring networks are a special case worth noting. In most countries, the majority of broadband traffic is generated in urban areas. Initial links are typically point-to-point but over time this architecture can become increasingly complex and inefficient. The topology of a ring network is highly practical for metropolitan areas where a significant amount of traffic is destined for other users in the area. A ring network simplifies network architecture by connecting premises in central business areas together over fiber optic cable. Traffic flows along the ring with each node examining every data packet (Figure 5.). The standard for metropolitan ring networks is Institute of Electrical and Electronics Engineers (IEEE) 802.17.

One of the dangers with ring networks is that if a node goes down or the fiber optic cable breaks, the whole ring could fail. This can be overcome by transmitting the information in two directions (clockwise and counterclockwise) or by building in other types of redundancy. Rings have tended to use Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) technology for transport. Wavelength Division Multiplexing (WDM) is emerging as a transport standard because of its efficiency and integration with gateways to national and international backbones.
5.6.2 Implementation Issues for Metropolitan Connectivity

Many of the implementation issues associated with the middle mile are the same as those involved with backbone development, namely cost and competition (see section 5.5.3). However, the choices of where such links should be built (or perhaps more accurately, upgraded since lower capacity links may exist) and how the network should be designed can be more difficult, both politically and technically. Government interventions are usually part of a plan to connect rural areas and are combined with other measures to roll out networks to those areas, as well as part of metropolitan government initiatives. Even if broadband networks reach rural areas, most countries have a significant gap in broadband speeds between rural and urban areas. For instance, in Europe most of the lowest broadband download speeds (256 kbit/s to 512 kbit/s) are found in rural areas.\(^\text{445}\)

In the context of limited funds for network build-out, choices will have to be made that balance the government’s desire to spread the benefits of broadband widely with the reality that not all areas can be served right away. In Australia in 2009, for example, the government announced an AUD 250 million “blackspots” program designed to bring high capacity links to regional centers without adequate connectivity, holding a consultation to determine which regions should receive new links.\(^\text{446}\)

Network design issues can also be difficult. In most developed countries, and countries with a liberalized telecommunications framework, there are competing alternative carriers that use the dominant carrier’s network through leases or open access requirements and build their own networks around the dominant carrier’s physical facilities. But as new broadband links are installed at the metropolitan level, an important issue to resolve is determining how many points of interconnection will be offered to the new broadband facilities and where will the points be located. In Australia, there has been a strong debate over how many points of interconnection should be offered, with the government and the National Broadband Network Company originally suggesting 14, while the competition authority states that 120 interconnection points are needed.
5.7 Local Connectivity

In the broadband supply chain, local access networks are those that directly connect end users to broadband services, the so-called “last mile.” There are a number of wireline and wireless broadband technologies used today to support local access networks. A plurality of broadband access options in a country increases consumer choice, stimulates inter-modal competition, enhances quality and innovation and is generally associated with lower retail prices. However, countries may not be able to use all possible technological choices for historical, technical, regulatory or financial reasons. As governments seek ways to promote broadband development, they will need to recognize the strengths and limitations that their existing level of infrastructure development provides—both for its upgrade possibilities as well as in developing appropriate incentive and/or competition policies.

5.7.1 Wireline Access Technologies

This section examines wireline broadband access technologies including digital subscriber line (DSL), cable modem, FTTP, and other options. The first three account for almost all wireline local access technologies worldwide (Figure 5.).

Figure 5.8. Wireline Broadband Technologies, Worldwide

![Wireline Broadband Technologies, Worldwide](chart.png)

Source: Point-Topic.

Digital Subscriber Line (DSL)

The Public Switched Telephone Network (PSTN) line running to the subscriber’s premise has traditionally been copper wire used for carrying signals, with a bandwidth of 3 to 4 kHz. This narrowband channel offers an analog carrier originally configured to provide a single telephone call. Two “twisted pair” copper wires are used to support duplex communications (i.e., the ability to send and receive at the same time). The PSTN has also supported the capability for narrowband Internet access for a number of years with subscribers using a modem to dial-up an ISP.

Digital Subscriber Line (DSL) technologies use special conditioning techniques to enable broadband Internet access over that same PSTN copper wire. Transmission speeds vary as a function of the subscriber’s distance from the telephone company switching facilities, the DSL version, the extent of fiber in the network, and other factors. DSL requires that the bandwidth over the copper line be separated between voice and data. A quartz crystal splitter is used to filter the data channel when using the shared copper local loop for telephone service. Similarly the voice channel must be filtered when
the line is used for broadband Internet access. Nonetheless, users can continue to make and receive PSTN telephone calls when using data DSL services. As was the case with dial-up access to the Internet, subscribers must have a modem installed between their computer and the copper wire. A DSL modem modulates upstream signals to the Internet and demodulates downstream traffic to the subscriber.

In addition to retrofitting their copper lines, telephone companies also have to upgrade their switching facilities in order split traffic into voice and data streams and to route data traffic between subscribers and the Internet. Traffic exchanged with the Internet is routed through a Digital Subscriber Line Access Multiplexer (DSLAM). This device aggregates (multiplexes) upstream traffic from DSL subscribers onto high-speed trunk lines to be delivered to the Internet. Similarly, the DSLAM disaggregates (demultiplexes) traffic arriving from the Internet and routes it to the intended subscriber.

DSL evolution

DSL has gone through several evolutions supporting increasing speeds and distances (See Table 5.2). The technology is standardized within the ITU under Study Group 15 and the G series of ITU-T Recommendations. Asymmetric Digital Subscriber Line (ADSL) maintains the frequency bandwidth of voice (i.e., below 4 kHz) for telephony service. Broadband is transmitted on two other frequency bands; one is allocated to a low speed upstream channel (25 kHz to 138 kHz) and the other is allocated to a high-speed downstream channel (139 kHz to 1.1 MHz). The theoretical maximum downstream bit rate of 6 Mbit/s and upstream rate of 640 kbit/s is defined by the standard.

In the ADSL2 standard, more efficient modulation and coding are implemented to improve the bit rate, quality and, to a lesser degree, coverage. The standard defines maximum bit rates of about 8 Mbit/s downstream and 800 kbit/s upstream. The data rate is increased with ADSL2plus through doubling the frequency bandwidth by including the frequency band between 1.1 to 2.2 MHz. This results in a standard of 16 Mbit/s downstream and 800 kbit/s upstream.

Very high-speed digital subscriber line (VDSL) allows for much greater symmetrical data rates accomplished through improved modulation techniques and adding more frequency bandwidth to the copper wire. However, the distances from the switch to the end user must be short or fiber must be installed to the curb. The VDSL2 standard overcomes some of these challenges by extending distances and reducing interference while increasing bit rates up to 100 Mbit/s for distances less than 300 meters.

Table 5.2. Digital Subscriber Line (DSL) Speeds

<table>
<thead>
<tr>
<th>Speed Type</th>
<th>Downstream speed</th>
<th>Upstream speed</th>
<th>ITU-T Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymmetric DSL (ADSL)</td>
<td>6 Mbit/s</td>
<td>640 kbit/s</td>
<td>G.992.1</td>
</tr>
<tr>
<td>ADSL2</td>
<td>8 Mbit/s</td>
<td>800 kbit/s</td>
<td>G.992.3</td>
</tr>
<tr>
<td>ADSL2plus</td>
<td>16 Mbit/s</td>
<td>800 kbit/s</td>
<td>G.992.5</td>
</tr>
<tr>
<td>Very-high speed DSL (VDSL)</td>
<td>52 Mbit/s</td>
<td>52 Mbit/s</td>
<td>G.993.1</td>
</tr>
<tr>
<td>VDSL2</td>
<td>100 Mbit/s</td>
<td>100 Mbit/s</td>
<td>G.993.2</td>
</tr>
</tbody>
</table>

Note: The speeds shown are those specified in the standard, not necessarily those experienced by end-users.

Source: Adapted from International Telecommunication Union, DSL: Digital Subscriber Line (May 2008), available at http://www.itu.int/dms_pub/itu-t/oth/1D/01/T1D010000040003PDFE.pdf.

In Israel, incumbent operator Bezeq has been rolling out VDSL2 as part of its NGN deployment with coverage to around half the households by the end of 2010. It was advertising bandwidth of 100 Mbit/s for DSL connections on its website in March 2011. Bezeq plans to offer up to 200 Mbit/s through VDSL bonding which uses two copper pairs per subscriber.
While DSL technology has evolved with ever-increasing data rates and remains the most popular wireline broadband technology in terms of subscriptions, its biggest constraint is bandwidth deterioration as the distance from the exchange increases, as shown in Figure 5.9.

Figure 5.9. DSL Slows Down with Distance

![Theoretical access line speeds for ADSL1 and ADSL2+ broadband services](chart)

Source: Ofcom

Cable modem

Cable modems provide subscriber access to broadband services over CATV networks. CableLabs developed standards for cable modem technology in the late 1990s. The technical guidelines are called *Data Over Cable Service Interface Specification* (DOCSIS). The DOCSIS guidelines have been progressively enhanced in terms of functionality (e.g., support for IPv6) and speed (Figure 5.4). The latest version is 3.0 with a slightly different European implementation (EuroDOCSIS). DOCSIS has been approved as an ITU Recommendation.

Figure 5.4. Cable Modem Speeds, Mbit/s

![Cable Modem Speeds Chart](chart)

Source: Adapted from Motorola
The first DOCSIS specification was version 1.0, issued in March 1997, which uses the subscriber’s copper wire telephone line for upstream traffic. Beginning in April 1999 with the DOCSIS 1.1 revision, cable operators added quality of service capabilities and began installing fiber optic cables originating at the cable operator’s switching facility (i.e., the headend) and terminating at a junction box near the subscriber. This combination of coaxial cable and fiber optic is referred to as a Hybrid Fiber Coaxial (HFC) network. Due to increased demand for symmetric services such as IP telephony, DOCSIS 2.0 was released in December 2001 to enhance upstream transmission speeds. Most recently, the specification was revised to significantly increase transmissions speeds (DOCSIS 3 and EuroDOCSIS 3).

Older CATV networks cannot sustain higher bandwidths without significant upgrades. CATV operators that have built out their networks recently generally have a high capacity bandwidth network from which they can partition a portion for broadband data service. Internet access via CATV networks uses a modem, and broadband access is typically called cable modem service. Television content is separated from Internet traffic at the headend. A cable modem termination system (CMTS) exchanges digital signals with cable modems and converts upstream traffic into digital packets that are routed to the Internet. The CMTS receives traffic from the Internet and routes it to the appropriate cable modem of the subscriber. Because CATV networks use a cascade of amplifiers to deliver video programming, cable modem service has fewer limitations than DSL on how far subscribers can be located from the headend.

Allocating additional frequency has enabled bandwidth increases for cable modem broadband. For example adding a 6 MHz channel for Internet access provides download speeds typically between 1.5 and 15 Mbit/s and upload speeds of 384 kbit/s to 3 Mbit/s. Channel bonding adds an additional 6 MHz channel to increase speed. However, unlike DSL where subscribers are provided a dedicated connection between their home and the provider’s switch, cable modem broadband capacity is shared among nearby users, which can cause a marked deterioration in service at peak times.

Until recently, the world’s fastest cable broadband network had been in Japan where J:Com offers speeds of 160 Mbit/s based on DOCSIS 3. It achieved this rate through a USD 20 per subscriber upgrade, considerably cheaper than building out a new fiber to the home (FTTH) network. In 2011, however, several companies began rolling out EuroDOCSIS services at speeds up to 200 Mbit/s.

Though there are a significant number of CATV subscribers in some countries, cable broadband penetration on a worldwide basis remains relatively low, particularly in developing countries. A main reason is because cable operators have not made the necessary investment in HFC networks. Another factor has been regulatory restrictions in some countries that forbid cable operators from providing Internet or voice services. In many countries, however, cable has just never achieved any significant market penetration, and satellite TV or digital terrestrial TV offers a substitute for multi-channel television distribution.

Fiber to the Premises

Fiber to the premises (FTTP) refers to a complete fiber path linking the operator’s switching equipment to a subscriber’s home (FTTH) or business (FTTB). This distinguishes FTTP from Fiber to the Node (FTTN) and Fiber to the Curb (FTTC), which bring fiber optic cable part of the way to a subscriber’s premises (Figure 5.). FTTN and FTTC are therefore not subscriber access technologies like FTTP, but are used to extend the capabilities of DSL and cable modem networks by expanding fiber optic cable deeper into the network. Again, the exact technology a company or government chooses to deploy or promote will depend on the unique circumstances in each country. FTTP offers the highest speeds of any commercialized broadband technology. However, it is not widely available around the world with the FTTH Council reporting that only 26 economies had at least one percent of their households connected.
FTTP sometimes replaces existing copper wire or coaxial cable connections but is also increasingly popular for greenfield building projects (where a new housing or commercial development is being built and no telecommunications infrastructure presently exists). FTTP can be designed with various topologies: point-to-point, where the optical fiber link is dedicated to traffic from a single subscriber; point-to-multipoint, where fiber optic cables branch to more than one premise and thus share traffic; and a ring, where the fiber optic cable is designed in a closed loop that connects various premises. The information flowing over the fiber optic cable is guided by protocols that have been standardized by the IEEE or the ITU (See Table 5.3).

Table 5.3. FTTP Access Protocols

<table>
<thead>
<tr>
<th>Access protocol</th>
<th>Name</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFM</td>
<td>Ethernet in the First Mile</td>
<td>IEEE 802.3ah</td>
</tr>
<tr>
<td>EP2P</td>
<td>Ethernet over P2P</td>
<td>IEEE 802.3ah</td>
</tr>
<tr>
<td>EPON</td>
<td>Ethernet Passive Optical Network</td>
<td>IEEE 802.3ah</td>
</tr>
<tr>
<td>BPON</td>
<td>Broadband PON</td>
<td>ITU-T G.983</td>
</tr>
<tr>
<td>GPON</td>
<td>Gigabit PON</td>
<td>ITU-T G.984</td>
</tr>
</tbody>
</table>

Most FTTP implementations are based on Passive Optical Network (PON) using point-to-multipoint topology serving multiple premises with unpowered optical splitters. Traffic is handled using an Optical Line Terminal (OLT) at the service provider’s central office and Optical Network Terminals (ONTs) (also called Optical Network Units [ONUs]) at the subscriber’s premises.
Though speeds on FTTP networks can be symmetrical and offer up to 1 Gbit/s, many service providers provide substantially lower asymmetrical speeds (often because the national backbone cannot handle high speeds). City Telecom, a broadband operator in Hong Kong, China, for example, has over half a million fiber homes. It offers 1 Gbit/s fiber service for around USD 25 per month.457

Other wireline broadband

Although DSL, cable modem and FTTP account for nearly all subscriptions worldwide, other technologies include Ethernet-based Local Area Networks (LAN) and Broadband over Powerline (BPL). Wireline LANs are a solution for connecting many subscribers in a large building such as apartments or offices. They are typically directly connected to a fiber or Ethernet backbone where broadband access is distributed through the LAN. A number of countries report LAN subscriptions as a separate wireline broadband access category. LANs could be wireline (using coaxial cable or twisted pair [Cat3 or 10Base-T]) or wireless, based on the IEEE 802.3 or 802.11 standards, which is typically used within a home or a public access facility.

BPL uses the electricity distribution network to provide high-speed Internet access. BPL operates by differentiating data traffic from the flow of electricity. This separation occurs by using a much higher frequency as a carrier through the copper wires coupled with encoding techniques that subdivide data traffic into many low powered signals, or that spread the bitstream over a wide bandwidth. The former encoding scheme is known as Orthogonal Frequency Division Multiplexing (OFDM) and the latter is a type of spread spectrum technology. In both technologies, Digital Signal Processing integrated circuits help keep data traffic intact, identifiable, and manageable.

BPL has so far failed to achieve wide-scale commercial success, partly because of interference issues and partly because of uncertainty over whether and how data transmission can take place at significant volumes over an entire electricity distribution grid. The problem stems from when transformers are used to reduce the voltage of the electricity to that used by residential and business users. Because a BPL distribution grid requires repeaters that amplify data signals, such networks can be costly to build. In addition, there are reports that BPL can interfere with some radio transmissions. Finally, there is no international standard for BPL. Finally, a big barrier in many low-income nations is the lack of a reliable electrical grid to carry the data signals.

A building’s internal electrical wiring can also be used as a type of LAN. Devices with Ethernet ports can be interconnected using plug-in adapters over electrical wiring to create home and office networks. The HomePlug Powerline Alliance has created an adapter standard and reports that it sold over 45 million such devices by March 2010, accounting for 75 percent of the market.458 The ITU covers the use of electrical wiring for home networking in its G.hn Recommendation.459

5.7.2 Wireless Access Technologies

The immense success of cellular telephone service attests to the attractiveness of wireless technologies as a local access solution. Success factors include being generally easier and cheaper to deploy than wireline solutions and consumer fondness for mobility. Technological innovations offer the near term opportunity for widespread mobile access to the Internet as next generation wireless networks have the technological capability of offering bit rates at near parity with current wired options, though not yet at the same price points. The ability for carriers to offer such services will depend on whether sufficient radio spectrum can be allocated for mobile broadband services and whether innovations in spectrum conservation techniques can help operators meet consumer demand.
Early wireless broadband standards

EDGE
Although an International mobile Telecommunications-2000 (IMT-2000) standard, EDGE initially offered less than broadband speeds (120 kbit/s according to the GSMA).\(^4\) A newer version of EDGE (“Evolution”) can achieve top speeds of up to one Mbit/s with average throughput of around 400 kbit/s,\(^5\) but EDGE is not considered a true mobile broadband solution. It can be attractive since it provides an upgrade path for Global System for Mobile communications (GSM) networks allowing higher speeds than GPRS,\(^6\) particularly where investment is constrained, regulators have not released mobile broadband spectrum, or to fill in coverage gaps.

CDMA2000 1x
CDMA2000 refers to the CDMA2000 1X and CDMA2000 Evolution Data Optimized (EV-DO) technologies that are part of the IMT-2000 standards. CDMA2000 builds on second generation (2G) CDMA technologies, known as ANSI-95 or cdmaOne, and uses a 1.25 MHz channel size. CDMA2000 attractions include backward compatibility with earlier standards, use for either wireline or mobile wireless and spectrum flexibility due to small channel size and availability in a range of frequencies including 450 MHz, the only IMT-2000 standard commercially available in that band (Figure 5.6).\(^7\)

Figure 5.6. Frequency Bands Used by CDMA2000

Note: 1. Identified at WRC-07. 2. Includes: 698-862 MHz band in Region 2 (Americas), 790-862 MHz band in Region 1 (Europe, Middle East, Africa, Russia and CIS) and 790-960 MHz identified for IMT in Region 3 (Asia-Pacific). 3. Future availability.

CDMA2000 1X supports circuit-switched voice up to and beyond 35 simultaneous calls per sector and high-speed data of up to 153 kbit/s in both directions. Although it was the first IMT-2000 technology to be commercially adopted, it is not considered mobile broadband due to the low speed. However, CDMA2000 1xEV-DO (Evolution-Data Optimized) uses packet-switched transmission specifically designed and optimized for mobile broadband networks. There have been three revisions to the EV-DO standard (Rel. 0, Rev. A and Rev. b), each offering higher speeds than its predecessor (see Table 5.4). In September 2010, there were 66 countries with Rel. 0 networks, 57 countries with Rev. A networks and three countries with Rev. B networks, together serving 156 million subscribers around the world.\(^8\) One
of the fastest EV-DO networks is in Indonesia, where operator Smart Telecom is using Rev. B to achieve an average download speed of 8.6 Mbit/s and a peak download speed of 9.3 Mbit/s.465

Table 5.4. EV-DO Peak and Average Speeds

<table>
<thead>
<tr>
<th>EV-DO</th>
<th>Peak speeds</th>
<th>Average user speeds</th>
<th>Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Download</td>
<td>Upload</td>
<td>Download</td>
</tr>
<tr>
<td>Release 0</td>
<td>2.4 Mbit/s</td>
<td>153 kbit/s</td>
<td>200-700 kbit/s</td>
</tr>
<tr>
<td>Rev. A</td>
<td>3.1 Mbit/s</td>
<td>1.8 Mbit/s</td>
<td>600-1400 kbit/s</td>
</tr>
<tr>
<td>Rev. B</td>
<td>9.3 Mbit/s</td>
<td>5.4 Mbit/s</td>
<td>1.8-4.2 Mbit/s</td>
</tr>
</tbody>
</table>

Box 5.2. CDMA 450 MHz for High-Speed Rural Internet Access

One of the attractions of 450 MHz spectrum is its use for rural communications. Because of the lower frequency range, there is wider coverage and fewer base stations are required so that investment costs are significantly lowered. CDMA2000 1X and EV-DO operate in 450 MHz and their use is helping to extend high-speed connectivity to rural areas. Although the number of subscriptions may not be high, they are often the only high-speed networks available to small rural communities where they can have an important socio-economic impact.

In Mexico, the incumbent Telmex won the government’s Fund for Telecommunications Social Coverage with its bid to provide services in some 8,500 rural communities with around seven million low-income inhabitants. It is using CDMA450 where each base station covers more than 80 km providing 150 kbit/s Internet connections. In addition to regular post and prepaid subscriptions (around 180,000 by late 2009), Telmex also set up some 500 “Digital Agencies” which offer personal computers (PCs), printers and Internet access to the public.

In Sweden CDMA2000 1xEV-DO in the 450 MHz band is attributed with reducing the number of people with no access to broadband by half between 2009 and 2010. Over 99 percent of Swedes living in sparsely populated regions have access to the CDMA 450 MHz network. Service is provided by Net 1, which has built a nationwide CDMA network in the 450 MHz frequency band, providing up to 25 times more coverage per transmitter than Universal Mobile Telecommunications System (UMTS) networks using the 900 MHz, 1800 MHz, and 2100 MHz bands. As a result, the 450 MHz network is available in places where it is not economically viable for competitors to provide coverage. Net 1 is using EV-DO Rev. A, offering download speeds of 3.1 Mbit/s for SEK 229 (USD 32) per month.

According to the CDMA Development Group, CDMA450 can be profitable at an average revenue per user (ARPU) of less than USD 8 per month and handsets are available for less than USD 25.

IMT-2000

The first two generations of mobile networks were characterized by analog and then digital technology. There were no global standards and a variety of technologies evolved. In an effort to standardize 3G mobile systems expected to be commercialized around the year 2000, the ITU developed the International Mobile Telecommunications (IMT) family of standards. Despite the goal of standardization, five significantly different radio interfaces for IMT-2000 were approved in ITU-R Recommendation M.1457 in 1999. WiMAX was added to M.1457 in 2007 (Table 5.5).

Table 5.5. IMT-2000 Radio Interfaces

<table>
<thead>
<tr>
<th>Radio interface technology</th>
<th>Common name</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDMA Direct Spread</td>
<td>Wideband CDMA (W-CDMA) / Universal Mobile Telecommunications System (UMTS)</td>
<td>Original frequencies in standard: 1 920-1 980 MHz as uplink and 2 110-2 170 MHz Later added: 2.6 GHz, 1 900 MHz, 1 800 MHz, 1 700 MHz, 1 500 MHz, 900 MHz, 850 MHz, and 800 MHz bands as well as a pairing of parts, or whole, of 1 710-1 770 MHz as uplink with whole, or parts, of 2 110-2 170 MHz as downlink.</td>
</tr>
<tr>
<td>CDMA Multi-Carrier</td>
<td>cdma2000</td>
<td>Including 1X and EV-DO. As the 3G-evolution path for 2G TIA/EIA-95-B standards assumption is that would use the same 2G frequencies.</td>
</tr>
<tr>
<td>CDMA TDD</td>
<td>TD-SCDMA</td>
<td>Original frequencies in standard: 1 900-1 920 MHz and 2 010-2 025 MHz for both uplink and downlink operation. Added later: 1 850-1 910 MHz; 1 910-1 930 MHz and 1 930-1 990 MHz.</td>
</tr>
<tr>
<td>TDMA Single-Carrier</td>
<td>EDGE</td>
<td>Provides an evolution path for GSM/GPRS so assumption is that implementation would use the same 2G frequencies.</td>
</tr>
<tr>
<td>FDMA/TDMA</td>
<td>Digital enhanced cordless telecommunications (DECT)</td>
<td>Not widely used as a mobile cellular technology</td>
</tr>
<tr>
<td>OFDMA TDD WMAN</td>
<td>WiMAX (IEEE 802.16)</td>
<td>Frequencies not mentioned in standard. Generally commercially implemented in the 2.3, 2.5/2.6 and 3.5 GHz bands</td>
</tr>
</tbody>
</table>

Source: International Telecommunication Union-Radiocommunication Sector, Recommendation M.1457.

W-CDMA/UMTS

W-CDMA, also referred to as Universal Mobile Telecommunications System (UMTS), is characterized by the use of Frequency Division Duplex (FDD). It uses paired spectrum in 5 MHz wide radio channels. W-CDMA is often marketed as an upgrade from GSM although it requires new base stations and initially new frequency allocation. However, since W-CDMA handsets are generally dual-mode to support GSM, there is typically seamless roaming between the two networks. Given its ties to the dominant GSM
standard, W-CDMA has been the most successful of the IMT-2000 technologies in terms of subscriptions.

High Speed Packet Access (HSPA) refers to the various software upgrades to achieve higher speeds on W-CDMA networks (See Table 5.6). Initial speed improvements are listed below although some operators have been able to achieve even higher data rates through various enhancements.

- **High Speed Downlink Packet Access (HSDPA)** increases download data rates. Speeds achieved by HSDPA top 14.4 Mbit/s with most operators offering speeds up to 3.6 Mbit/s. Upload speeds are 384 kbit/s.

- **High Speed Uplink Packet Access (HSUPA)** increases upload rates. Upload speeds are increased to a maximum of 5.7 Mbit/s.

- **HSPA+** (also known as HSPA Evolved) offers significant speed improvements. HSPA+ enables speeds up to 42 Mbit/s in the downlink and 11 Mbit/s in the uplink. In March 2011 there were 128 HSPA+ networks in 65 countries including 95 HSPA+ networks offering peak rates of 21 Mbit/s, 11 HSPA+ networks offering peak rates of 28 Mbit/s and 22 HSPA+ networks offering peak rates of 42 Mbit/s.\(^4\)

Table 5.6. W-CDMA and HSPA Theoretical Data Rates

<table>
<thead>
<tr>
<th>Technology</th>
<th>Download</th>
<th>Upload</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-CDMA</td>
<td>384 kbit/s</td>
<td>384 kbit/s</td>
</tr>
<tr>
<td>HSDPA</td>
<td>14.4 Mbit/s</td>
<td>384 kbit/s</td>
</tr>
<tr>
<td>HSUPA</td>
<td>Specification for upload and not download</td>
<td>5.7 Mbit/s</td>
</tr>
<tr>
<td>HSPA</td>
<td>42 Mbit/s</td>
<td>11 Mbit/s</td>
</tr>
</tbody>
</table>

TD-SCDMA

Some of the key characteristics of Time Division-Synchronous Code Division Multiple Access (TD-SCDMA) are that it uses time division duplexing (TDD) (unlike W-CDMA which uses FDD) and does not require paired spectrum, increasing spectrum flexibility. The synchronous refers to the fact that the base station synchronizes upstream signals. Interference is reduced and capacity is increased; however, there is reduced coverage compared to other technologies. China is the only country where TD-SCDMA has been deployed on a significant scale (Box 5.3). Launched by China Mobile on January 7, 2009, the network had reached coverage of 656 cities by the end of 2010 with 20,702,000 subscribers.\(^5\)

Box 5.3. China’s Three 3G Technologies

China is one of the few countries in the world with three different kinds of mobile broadband networks. In early January 2009, the Ministry of Industry and Information Technology awarded three 3G licenses to three different operators in China for three different IMT-2000 technologies. China Mobile received permission to use the homegrown TD-SCDMA technology, becoming the world’s first implementation of this standard. China Unicom was approved to operate 3G using W-CDMA, which has been widely deployed in many countries. Meanwhile, China Telecom was awarded a 3G license using CDMA2000 technology. It already operated a CDMA2000 network and the new license allowed it to upgrade to faster EV-DO speeds. Competition between these three different technologies has rapidly boosted the take-up of 3G: from zero subscribers in 2008 to 10 million in 2009, and 47 million by the end of 2010. Though the networks are incompatible for now, it is hoped that they will evolve...
to the next generation mobile standard, LTE.

Source: China Mobile.

WiMAX

WiMAX consists of several products based on IEEE 802.16 standards for wireless broadband. Originally designed as a wireline backbone technology, the mobile version of WiMAX (802.16e) is a more recent incarnation that was approved by the ITU as an IMT-2000 standard in 2007. Distinguishing features of WiMAX include IP packet switching, the use of scalable orthogonal frequency division multiple access (SOFDMA), unpaired spectrum using TDD, and operation in the 2.3, 2.5/2.6 and 3.5 GHz bands. Top theoretical speeds for wireless WiMAX are 46 Mbit/s on the uplink and 7 Mbit/s on the downlink, roughly equivalent to HSPA+ networks.

Though mobile WiMAX is standardized as an IMT-2000 technology by the ITU, it is often used as a fixed wireless access technology (IEEE 802.16). One of the early implementations was the Korean variation called WiBro. The government issued spectrum in the 2.3/2.4 GHz band in 2005 and WiBro was commercially launched in April 2007. By the end of 2010, there were WiMAX networks in 149 countries covering more than 823 million people. The number of WiMAX subscribers around the world was estimated at 13 million in December 2010.

IMT-Advanced

The ITU has been working on standards for the next generation of wireless systems for a number of years. In March 2008, it issued a circular letter specifying the provisions for International Mobile Telecommunications-Advanced (IMT-Advanced) networks, which are generally defined as systems “that go beyond those of IMT-2000.” One of the most significant requirements is peak data rates of 100 Mbit/s for high mobility and 1 Gbit/s for low mobility. In October 2010, the ITU announced that two technologies met the requirements for IMT-Advanced: LTE-Advanced and WirelessMAN-Advanced.

LTE and LTE Advanced

Development on the LTE mobile network standard started in 2004. One goal was to achieve higher data speeds to support the rising growth in Internet access over mobile phones. Targeted speeds were initially 100 Mbit/s for downloads and 50 Mbit/s for uploads. LTE uses OFDM for downloads and Single Carrier-Frequency Division Multiple Access (SC-FDMA) for uploads. LTE is designed for frequency flexibility with bandwidth requirements ranging from 1.25 and 20 MHz and support for both paired (FDD) and unpaired (TDD) bands.

LTE standards have been developed under the auspices of the 3rd Generation Partnership Project (3GPP). The 3GPP Release 8, issued in December 2008, forms the basis for initial LTE deployments. It has theoretical maximum download speeds of 300 Mbit/s and upload speeds of 75 Mbit/s. In order to meet global requirements for 4G mobile networks, 3GPP developed “LTE Release 10 and Beyond” (LTE-Advanced) which was submitted to the ITU in October 2009.

Although LTE was developed within the auspices of the 3GPP, whose work includes technical specifications for GSM, W-CDMA and HSPA technologies, there is no straightforward migration path. So far, LTE deployments have required the purchase of new equipment by operators and devices by users.

The world’s first LTE deployment was by TeliaSonera when it simultaneously launched networks in Stockholm, Sweden, and Oslo, Norway, at the end of 2009 using the 2.6 GHz frequency band.
Verizon’s LTE network launch in the United States in December 2010 is noteworthy for using the 700 MHz frequency band.479 Verizon reported that speeds were 5 to 12 Mbit/s download and 2 to 5 Mbit/s upload. According to 4G Americas, there were 19 commercial LTE networks worldwide in 14 countries in March 2011.480

WirelessMAN-Advanced

WirelessMAN-Advanced is standardized as IEEE 802.16m and offers backward compatibility with IEEE 802.16e, an IMT-2000 technology. It meets the IMT-Advanced data rate requirements with a theoretical 180 Mbit/s downlink using a 20 MHz TDD channel.481 Multiple channels can be aggregated to support 1 Gbit/s speeds.482

Wi-Fi

Wi-Fi refers to the IEEE 802.11 family of standards specifying wireless local area networking over 2.4 and 5 GHz frequency bands. Wi-Fi is not typically deployed as a commercial local access network, but most often is used to redistribute a broadband connection to a wider group of users in homes, offices and “hotspots.” Wi-Fi technology has gone through a number of updates that provide varying speeds depending on the frequency and version used (Table 5.7).

<table>
<thead>
<tr>
<th>Wi-Fi Technology</th>
<th>Frequency Band</th>
<th>Maximum data rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11a</td>
<td>5 GHz</td>
<td>54 Mbit/s</td>
</tr>
<tr>
<td>802.11b</td>
<td>2.4 GHz</td>
<td>11 Mbit/s</td>
</tr>
<tr>
<td>802.11g</td>
<td>2.4 GHz</td>
<td>54 Mbit/s</td>
</tr>
<tr>
<td>802.11n</td>
<td>2.4 GHz, 5 GHz</td>
<td>450 Mbit/s</td>
</tr>
</tbody>
</table>

Reportedly one in ten people around the world use Wi-Fi.483 Its success is attributed to a number of factors, including embedding Wi-Fi chips in portable computers and smartphones, the fact that it operates on a license-exempt (unlicensed) basis484, and the relative ease of installation compared to wired networks, with the majority of the upgrade costs lying with the consumer rather than the operator.

In addition to sharing broadband connectivity with devices in home and office networks, significant applications that Wi-Fi is being used for include:

- **Subscription-based access to broadband.** Many wireline ISPs around the world offer Internet access through Wi-Fi hotspots at airports, coffee shops, and other locations. This is seen as a complement to their traditional service.

- **Municipal Wi-Fi networks.** Large-scale Wi-Fi networks have been deployed in some urban areas around the world to provide free Internet access. Wireless@KL in Kuala Lumpur, Malaysia, provides free 512 kbit/s access throughout the city; faster speeds are enabled through payment.485 The Kuala Lumpur City Hall (DBKL) and the Malaysian Communications and Multimedia Commission (MCMC) sponsor the KL Wireless Metropolitan Project in collaboration with Packet One Networks, an ISP. Some 1,500 hotspots have been deployed in the city.

- **Relief for congested mobile networks.** Mobile operators were initially lukewarm about handsets with Wi-Fi capability, since users could bypass more expensive cellular network data offerings. That view is changing due to the rapid growth in demand for data over mobile cellular networks and consequent capacity constraints. Today, many mobile operators embrace Wi-Fi as
a way to offload 3G-network traffic as a complement to their regular commercial service. For example, AT&T in the United States is automatically switching smartphone users to Wi-Fi when they are within range of a hot spot.486

\textbf{Satellite}

Aside from its role in the international and backbone segments of the broadband supply chain, satellites are also used to provide direct subscriber access to broadband services, particularly in remote areas where wireline broadband is not available and where there is no terrestrial high-speed wireless coverage.487 The subscriber uses a satellite antenna/dish that is connected to a satellite modem. Speeds vary depending on the satellite technology, antenna, and the weather. Latency can be an issue for some applications (e.g., gaming). Although it serves specific niches, satellites do not offer the same price to quantity ratio as other broadband solutions. For example, in March 2011 the highest speed available from a leading retail broadband satellite provider in the United States was 5 Mbit/s for USD 300 per month.488

\textbf{5.7.3 Implementation Issues for Local Connectivity}

Countries face a number of challenges in deploying local broadband access networks including whether and how physical infrastructure can be shared, quality of service, and spectrum.

\textbf{Local loop unbundling (LLU)}

In many countries, an incumbent, former monopoly wireline provider often controls the only extensive local access network. In such cases, regulators have sought ways to introduce more competition and innovation into the local access market. LLU has been one of the main methods implemented in developed nations for service providers to gain access to the incumbent’s switched telephone network in order to provide DSL service. There are three main implementations:

- Full unbundling: The entire copper local loop is leased to a service provider. The service providers install their own broadband equipment either in, or close to, the incumbent’s site.
- Line sharing: The copper local loop is shared between the incumbent and the other service provider. The incumbent provides voice telephony over the lower frequency portion of the line, while the other provider offers DSL services over the high frequency portion of the same line.
- Bit stream access: DSL service is essentially sold at wholesale prices to the service provider who in turn resells it to customers. The incumbent operates all of the key infrastructure components in the loop.

\textbf{Quality of service}

There is often a significant difference between advertised speeds and actual speeds achieved by users (see Figure 5.). The problem is that the advertised speeds are usually based on the theoretical capability of the technology or standard. In reality, however, there are numerous factors that make such speeds very difficult or even impossible to achieve, including network congestion or (for wireless networks) radio interference.
In an effort to manage network quality, many providers are moving away from unlimited broadband packages and adopting so-called “fair use policies” in order to control and regulate traffic. One practice is the use of data caps where providers establish a threshold on the amount of data that can be downloaded per month. Once the cap is exceeded, the subscriber either has to purchase additional download volume, or the subscriber’s speed is reduced or in the worst scenario, service is terminated for that month. Some operators establish different caps for domestic and international traffic. Another practice is controlling the use of high-bandwidth applications or access to traffic-intensive sites through restrictions or degrading service. This practice has been banned in some countries as a violation of network neutrality. Providers have been known to “throttle” service by limiting the subscriber’s bandwidth when they have exceeded data caps or try to access traffic-intensive sites.

These network management practices have been contentious since they are often covered by the “small print” of customer contracts and many users are not aware of them. In an effort to alleviate consumer concerns about service quality, some governments monitor and compile reports on service quality. The Telecommunications Regulatory Authority (TRA) in Bahrain, for example, publishes data on wireline broadband performance. The TRA measures upload and download speeds for different broadband packages, DNS response (time taken in milliseconds to translate a domain name to its IP address) and ping (send an echo request to a server to test latency). In other countries, although governments do not publish quality of service reports, they offer sites consumers can go to in order to check their speeds.

Spectrum

One of the biggest constraints for wireless broadband deployment and usage is the availability of spectrum. A number of countries have yet to allocate mobile broadband spectrum, have not allocated certain frequencies, or have not allocated sufficient spectrum.
Although the number of frequency bands in which mobile broadband operates has increased, not every technology operates in every band. Therefore, by not licensing certain bands, countries prevent the availability of some mobile broadband technologies. Another issue is that even slight differences in frequency assignments can make a difference in equipment compatibility, impacting prices and roaming. Growing mobile broadband demands are placing increasing pressure on spectrum availability. There are several techniques that providers use to increase capacity, including cell splitting, upgrading to more efficient technology, and offloading some uses onto other networks like Wi-Fi. However, there may come a point where technology cannot fix the capacity shortage and additional spectrum is required.

Some countries have already begun examining how to use the various bands identified for broadband, including the so-called “digital dividend” spectrum that can be made available as the result of the transition from analog to digital television. One promising solution could be *cognitive radio*, where devices reconfigure themselves according to whatever spectrum is available, while avoiding interference. The first call in the world using cognitive radio was made in Finland in 2010.491

In looking at spectrum, regulators need to make determinations relating to the best procedure to follow in awarding spectrum, whether to impose limits on the amount of spectrum a single operator can hold, and whether to allow operators to engage in secondary trading. These issues are discussed in more detail in Chapter 3.
6.1 Introduction

In general terms, demand for broadband services, applications and content is thriving and may not appear to need a large amount of government effort to spur adoption by those who have broadband access. In 2010, for example, 40 percent of all consumer Internet traffic was video which was 1.6 times the video traffic of the previous year and mostly comprised of private sector-created or was user-generated video. Broadband use is growing fast and is heavily driven by private sector content. Nevertheless, governments have sought to complement supply-side policies that focus on building infrastructure with demand-side efforts that seek to drive demand for broadband access and services. Although demand stimulation is particularly relevant in the early stages of broadband market development, it is also important in more mature broadband markets, where there are likely to be some potential users, such as elderly and less-educated persons, who may not be taking advantage of the benefits offered by broadband.

Demand facilitation or stimulation refers to efforts to boost the use of broadband by raising awareness of its possible benefits, as well as making it affordable and more attractive to users. As discussed in Chapter 1, supply-side strategies focus on the “availability” of broadband by promoting investment in broadband technologies and infrastructure, based on the assumption that there is unsatisfied demand or that demand will grow to justify those investments. Demand-side strategies focus on growing the market through programs designed to encourage broadband Internet access and adoption. With more visible demand, infrastructure providers are more likely to make the investments needed to spur greater broadband development.

Demand facilitation strategies can be included in top-down national plans, can originate from grass-roots efforts or can involve the public and private sectors, as well as civil society. The scope of such strategies may be targeted at one particular obstacle to access, such as the high cost of connections or computer ownership, or may be broader, resulting in more comprehensive programs that attempt to address multiple barriers. The Dominican Republic, for example, established legislation to address not only the financing mechanisms needed to achieve broadband, but also the deployment of infrastructure and the acquisition and installation of terminal equipment such as computers, Personal Digital Assistants (PDAs), smart phones and other devices that enable consumers to use a broadband connection. Demand facilitation may also involve packaging broadband with applications that appeal to specific sectors of the economy or groups within society.

This chapter analyzes the various approaches that can be used to facilitate additional demand for broadband services. These approaches can be roughly characterized into three categories—awareness, affordability and attractiveness. Governments seeking to promote broadband services will need to address all three of these issues. In Malaysia, for example, a new National Broadband Initiative (NBI) was launched in March 2010. In terms of spurring demand for broadband, the NBI focuses specifically on these areas. As stated by the MCMC:

The approach for creating awareness will be through continuous government and private sector involvement in the awareness programs and capacity building initiatives. In order to improve the attractiveness of the online content, efforts will be focused to enhance and promote e-government, e-Education and e-Commerce. Efforts are also on the way to digitalize the traditional information resources such as library, archive, etc. to be available online. The affordability factor and bridging the digital divide is being improved by developing various incentives to reduce the broadband access costs and widening the community access.
Figure 6.1 provides a summary overview of the mechanisms that can be used to spur demand. See section 2.3.5 for an introduction to the three pillars of awareness, affordability and attractiveness.

Figure 6.1. The Three Pillars of Facilitating Broadband Demand

- **Awareness**
 - Encourage use of education in schools to promote digital literacy
 - Encourage and train SMEs on benefits of broadband
 - Provide training on security and privacy
 - Support secure e-transactions

- **Affordability**
 - Lowering user terminal service costs by reducing import duties and other taxes or through targeted subsidies
 - Providing broadband equipment to educational institutions at cost or via subsidies

- **Attractiveness**
 - Supporting local, relevant Internet content in local languages
 - Creating e-government and other e-applications (such as for health, education, and agriculture)

Source: World Bank.

6.2 Awareness

Awareness of the benefits of broadband and the capability to use broadband are critical first steps in building demand for broadband services. In order for people to successfully use broadband, they must have the necessary interest and competency. This is sometimes referred to as digital literacy, which has been defined as “using digital technology, communications tools, and/or networks to access, manage, integrate, evaluate, and create information in order to function in a knowledge society.” Digital literacy ideally makes users aware of and capable of accessing broadband applications and services. This, in turn, widens the information available to them, provides new ways of learning and creates new employment opportunities.

There is a spectrum of digital skills that increase in complexity as users gain expertise. Therefore, ICT skills competency can range from a basic understanding, which enables users to access information using broadband, to deeper technical knowledge, which enables them to create and disseminate their own information, including new applications and services (see section 6.4.2). This is acknowledged in definitions of the different stages of digital literacy (see Figure 6.2).
Figure 6.2. Elements of digital literacy

<table>
<thead>
<tr>
<th>Elements</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access</td>
<td>Knowing about and knowing how to collect and/or retrieve information.</td>
</tr>
<tr>
<td>Manage</td>
<td>Applying an existing organizational or classification scheme.</td>
</tr>
<tr>
<td>Integrate</td>
<td>Interpreting and representing information - summarizing, comparing, and contrasting.</td>
</tr>
<tr>
<td>Evaluate</td>
<td>Making judgments about the quality, relevance, usefulness, or efficiency of information.</td>
</tr>
<tr>
<td>Create</td>
<td>Generating information by adapting, applying, designing, inventing, or authoring information.</td>
</tr>
</tbody>
</table>

There are various ways and institutional settings in which people learn digital literacy skills. They range from watching friends, to being taught in schools, to participating in special programs (see Figure 6.3). The range of skills and settings vary and overlap. For example, some people may choose simply to acquire basic skills in a formal academic environment, while others may choose to pursue a higher degree of ICT knowledge. Although there are a variety of institutional settings for gaining knowledge about the use of broadband networks, self-training plays an ongoing lifetime role. This is particularly important since the services and applications available over broadband networks continually evolve.

Figure 6.3. How people obtain ICT training, Europe, 2007

Note: *Training courses and adult education centres. **Informal assistance from colleagues, relatives, and friends.
There are several challenges to ensuring that people are digitally literate. Some studies suggest that the main way people learn about ICTs is through self-study (i.e., through their own initiative and assistance from friends, family and colleagues) rather than formal courses. Motivating people to continue to learn on their own is essential in order for them to adapt to the constant evolution in broadband services and applications without having to always resort to more formal training. This is related to the interaction of digital literacy with “value addition.” Although training is important, it does not necessarily build peoples’ understanding of how broadband and associated technologies can transform their lives. This risks the creation of a “value divide” in terms of the people who have broadband, but who widely diverge in their ability to derive value from it. As broadband spreads to other platforms, particularly mobile phones in developing countries, the notion of digital literacy, which has typically been associated with learning on PCs, must be adapted to entail familiarity with using applications and services delivered via various mobile devices such as smartphones and tablets.

6.2.1 Basic Digital Literacy

People must have basic skills (one of the components of “access” in Figure 6.2) to reach the point where they can teach themselves. Basic and some advanced skills are increasingly offered to students in primary and secondary educational institutions, while adults or other potential user groups can obtain skills through community learning centers or similar institutions. Advanced skills are typically developed in post-secondary environments, including training provided by the private sector and through more informal methods. In addition, remedial basic skills development may be needed by those who have been bypassed in the acquisition of ICT skills through formal primary and secondary education—either because they did not complete schooling or because ICT training was not available.

Digital Literacy through Education

To enhance awareness of the benefits of broadband, countries may need to impart basic digital literacy skills to their people as part of, or associated with, their general educational programs. The extent of such need varies depending on the level of sophistication of the ICT sector and overall educational background of a country’s inhabitants. Quite often, those lacking basic digital literacy tend to be the “at risk” groups, such as the elderly, women, the uneducated, people with disabilities, and the unemployed. These groups need to be included in plans to enhance digital literacy in order to allow them to benefit from broadband and broader ICT services and applications. This is particularly critical given that as the average level of broadband penetration in a country grows, the social and economic costs of being excluded from access also increases.

The EU has acknowledged the importance of digital literacy through various programs over a number of years. A key thrust of the EU’s i2010 strategy is “e-Inclusion”—the ability and willingness of individuals and communities to participate in the information society. In 2005, for example, there were large disparities in Internet use between the average population and persons over 65, those with low education and the unemployed. The EU set a target of cutting in half the gap in digital literacy between the average population and those groups, as well as immigrants, people with disabilities and marginalized young people. It proposed the following actions to improve digital literacy:

- Offering digital literacy courses through formal or informal education systems tailored to the needs of groups at risk of exclusion.
- Undertaking digital literacy actions through partnerships with the private sector and in conjunction with other related educational initiatives and regularly upgrading skills to cope with technical and economic developments.
• Supporting qualification methods measuring digital literacy achievement.

A review of progress since a 2006 EU conference on an inclusive information society found increases in broadband connections, the use of the Internet and digital literacy. There were advances in Internet use for disadvantaged groups, particularly the unemployed and marginalized youth. A significant factor was the number of digital inclusion initiatives launched by member countries, as well as by civil society and the private sector. Nevertheless, it was recognized that more efforts were needed to reduce digital exclusion; additional measures were incorporated into Pillar 6 (Enhancing digital literacy, skills and inclusion) in the Digital Agenda for Europe adopted in May 2010.

Developing countries have also adopted a variety of programs to provide training on how to use computers and the Internet. As illustrated in Box 6.1, Sri Lanka is enhancing the digital literacy of its people by providing training to vulnerable groups through schools and computer learning centers.

Box 6.1. Sri Lanka’s Approach on Computer Literacy

In Sri Lanka, a fifth of the population was “computer literate” in 2009 according to a survey by the Census and Statistics Department, but gaps exist depending on age, education and language fluency (see Figure 6.4). Around 60 percent of college-educated persons were computer literate compared to just over one percent for persons with no schooling. Over half of the country’s English speakers were computer literate compared to less than a quarter of those who only speak other national languages.

Figure 6.4. Computer literacy in Sri Lanka, 2009

Training for Sri Lanka’s vulnerable groups is being supported through schools and telecenters. The Asian Development Bank helped to fund the Secondary Education Modernization Project, which included a component for creating over 1,000 Computer Learning Centers (CLCs) with Internet access in secondary schools. The CLCs were open to the public after school hours to provide training and Internet access. The Ministry of Education issued a regulation for schools to keep the money earned from training and Internet access services instead of transferring it to the central treasury, allowing the CLCs to recover a portion of their operating costs. About 90 percent of schools with CLCs provide after-hour use, with 70 percent of them earning a profit. The earnings have been used to pay for access, electricity, maintenance, repairs and to purchase printers and scanners.
Chapter 6. Driving Demand for Broadband Networks and Services

Note: A person is considered computer literate if he could use a computer on his own.

Broadband can also improve digital literacy through a variety of e-education services and applications, which also have the potential to increase demand for broadband services, including access to digital libraries of information; distance-learning and virtual classrooms; and distance teacher training for those in remote areas. For example, Colombia’s National Learning Service (Servicio Nacional de Aprendizaje, or SENA) uses broadband services, along with other media, to train millions of people each year (nearly eight million in 2009) using virtual online courses in professional and vocational subjects. In large part, this has only been possible by using broadband services along with distance and online courses. SENA offers free training to all Colombians in a variety of vocational and professional subjects, including arts and sports; social sciences and education; finance and administration; manufacturing; health services; information technology; and retail services.

One very important way to provide digital literacy is through primary and secondary schools, particularly since enrollment is mandatory in many countries. Although many countries have installed computers and broadband access in schools, policies vary widely regarding access by students. In some cases, computers are only available to administrative staff, while in others computer labs exist but may not be accessible to all students. Adequate availability of computers, tablets and/or mobile phones is essential as a starting point for building digital literacy. A lack of computers, in particular, may limit educational opportunities. The number of computers per student varies widely around the world, a factor that can significantly enhance—or limit—the ability of countries to effectively offer ICT training to students.

In an effort to increase computer availability for students, some countries have been moving toward a one-to-one model where each student receives his or her own laptop (see section 6.3.1). This has been fueled by the development of low-cost computers for education and is particularly relevant in countries where few students have access at home.

However, broadband access is also essential in order to learn how to use the Internet. Internet access at school is particularly relevant in developing nations where many students come from homes without such access. The availability of Internet access in schools varies widely as well (see UNESCO Institute for Statistics, Information and Communication Technology in Education Statistics (ICT4E Stats)).

Funding-wise, countries can pursue a range of policies in getting their schools connected, such as including broadband access in education budgets, using universal service policies or funds to have operators provide access, or working with development partners (see Table 6.1).

Table 6.1. Examples of funding for school connectivity

<table>
<thead>
<tr>
<th>Country</th>
<th>Funding source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chile</td>
<td>Telecom operator</td>
<td>Under the “Educational Internet 2000” project, launched by the Ministry of Education, the incumbent telecom operator agreed to provide Internet service to primary and secondary schools, free of charge, for 10 years.</td>
</tr>
<tr>
<td>Namibia</td>
<td>Development partner</td>
<td>The Swedish International Development Cooperation Agency (SIDA) has provided ongoing financial assistance to Namibia’s SchoolNet project, which provides Internet access to schools. SIDA has contributed close to NAD 23 million (USD 2.9 million) since mid-2001.</td>
</tr>
</tbody>
</table>
Chapter 6. Driving Demand for Broadband Networks and Services

<table>
<thead>
<tr>
<th>Country</th>
<th>Funding source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philippines</td>
<td>Government</td>
<td>A 2009 Presidential Order directed the Department of Education to connect all Filipino public secondary schools to the Internet. The annual outlay for Internet subscription is PHP 48,000 (USD 1,115) per school or some USD 6.3 million in total.510</td>
</tr>
</tbody>
</table>

Source: Adapted from ITU, Module 1: Policies and Regulation to Promote School Connectivity, Connect a School, Connect a Community, available at http://www.connectaschool.org/itu-module/1/22/en/schools/connectivity/regulation/Section_3.6_funding/.

Where countries choose to include digital training in their primary and secondary school curriculum, they should also ensure that the results of these programs are measured. As is shown in Box 6.2 below, Australia has followed this approach.511

Box 6.2. Measuring Digital Literacy in Australia

ICT is incorporated into the Australian educational curriculum and digital literacy among students is measured using a six-stage methodology in which students performing at level 1 are able to complete basic tasks using computers and software, while level 6 capabilities include using advanced software features to organize information and to synthesize and represent data as integrated complete information products.512

In 2008, the Australian government measured the effects of the digital literacy program using a standardized test for Year 6 and Year 10 students across Australia. As shown in Figure 6.5, over 40 percent of Year 6 students were proficient at level 3, which includes the ability to conduct simple general searches and select the best information source to meet a specific purpose.513 Nearly half of Year 10 students were functioning at level 4, which required them to generate more complex, well-targeted searches for electronic information sources and assemble information to create new content in ways that demonstrate some consideration of audience and communicative purpose.

Figure 6.5. Distribution of digital literacy across proficiency levels, Australia, 2008

Source: MCEECDYA, National Assessment Program – ICT Literacy Years 6 & 10 Report.
Community Access Centers
Outside the formal educational process, there are additional groups of users that can be targeted for digital literacy training. Turkey, for example, has opted to establish public Internet access centers. The Turkish Information Society Strategy and its annexed Action Plan endeavor to establish public Internet access centers across Turkey to provide computer and Internet access to those who do not have access at home.514 The strategy targets libraries, public foundations, corporations, municipalities, organized industrial regions, public training centers and volunteered foundation buildings as potential locations to provide access to citizens. Moreover, a PPP with Turk Telecom established 716 public Internet access centers in various districts.515 The government is currently looking into expanding the number of public Internet access centers across the country. In addition, the government has extended connectivity to military conscripts though a total of 227 Public Internet Access Centers maintained with 4,487 computers, 227 projectors, printers and related equipment in military campuses.

A comprehensive broadband strategy should also consider user-related issues so that available funds can finance projects to increase uptake and usage by specific groups and communities such as women, people with disabilities and public facilities. Such projects can be part of universal broadband initiatives and funding. In many countries, community telecenters are often part of universal service programs and funded by the government or USF. In the case of broadband, it is also important to ensure that programs to fund telecenters include induction programs for people who are experiencing broadband services for the first time, including digital literacy training and broader training in how to use basic tools or available online services (such as e-government services).

Advanced ICT Training
Advanced ICT training refers to the acquisition of high-level skills necessary to support broadband networks and develop broadband content and applications. There are two general venues where advanced skills are taught: 1) specialized and more informal post-secondary schools, including training provided by the private sector, and 2) the formal university environment. Specialized post-secondary institutions include colleges, vocational schools and courses typically taught by multinational software or hardware companies or international companies that specialize in ICT training. An example is the Cisco Networking Academy program, which teaches network skills to almost one million students per year. Courses are taught at some 9,000 academies in 165 countries.516 Countries can create similar partnerships with other hardware, software, content and broadband services companies to fuel the development of training facilities and courses.517 India provides an example of the benefit of training through more informal institutions. Since the formal Indian ICT training sector through colleges and universities cannot cope with the demand for skilled ICT professionals, part of the demand is being met by India’s training sector, which consists of over 5,000 private institutes offering ICT courses to over half a million students.518

Incorporation of ICT degrees within the formal higher education setting is important for developing highly skilled experts; fomenting a research and development culture; and addressing, understanding and developing broadband needs within the context of national goals. Governments seeking to promote broadband in their countries should develop undergraduate, master and doctorate programs of study in ICTs to expand expertise in areas such as software engineering, networking, security, etc. A lack of domestic programs in these areas has often meant that students and professors go abroad and do not return.519 The higher education sector should forge links with industry in order to obtain funding as well as support for labs, incubators, and eventual job placement.
6.2.2 Privacy and Security Concerns

One obstacle to generating demand is that potential users may be afraid of using broadband services for reasons related to privacy, security or identity theft. Training programs that address such concerns are also an important part of convincing those who are not online that broadband access can be safe as well as productive. In Korea (Rep.), for example, the government created the Korea Information Security Agency (KISA) and the Korea Internet Safety Commission to oversee Internet security and consumer protection as part of its efforts to get people online. The United Kingdom has a website called KidSMART that has information about safe and legal Internet use for children. Finally, Sweden has made “confidence” a cornerstone of its ICT policies since 2000. This includes not only confidence to use the technology, but confidence that personal information will be protected and secure. See Chapter 3 for more information on how governments can address privacy and security concerns.

6.2.3 Small and Medium Enterprises (SMEs)

One particular group that governments may wish to focus on for purposes of demand stimulation is SMEs. Such companies may not have ICT expertise or knowledge of how broadband can benefit their business functions. An Internet presence supported by broadband can help SMEs by providing them with the ability to reach new customers, reach a wider range of potential partners, and tap a wide range of resources to support their business. Concentrating on SMEs may also have important “pass through” effects, allowing governments to reach their employees at the same time. SMEs are also likely to find e-government programs particularly helpful in interacting more efficiently with the government, whether to apply for permits, file taxes or supply/obtain government services.

To help SMEs use broadband networks and services most effectively, governments have adopted a variety of innovative outreach programs. The Dutch government, for example, has launched a program to stimulate and support the creation of applications for local SMEs (see Box 6.3). In Spain, the government is providing specific training for employees of SMEs, while Germany and Sweden have also established programs to provide training to SME employees to increase their ICT skills and increase their competitiveness. In Denmark, the government launched a program to train SMEs, providing assistance through private consultants and helping individuals to obtain the needed ICT skills to start e-businesses. Providing support to SMEs to help them better use broadband is one of the important goals of the U.S. National Broadband Plan.

Box 6.3. Stimulation of Local Applications Development for SMEs in the Netherlands

The Netherlands created a center for the development of local applications for SMEs. The center is half publicly funded and projects require having private developers. The center focuses on specific sectors of the economy (e.g., hotels, restaurants, health), but also promotes cross-sector applications. Examples of applications created in this center are SME-specific solutions for customer relationship management, internet marketplaces, and applications to manage Radio Frequency Identification (RFID) and integrate Personal Digital Assistants (PDAs) in business processes.

The center also works as a knowledge bank where projects are disseminated among SMEs through seminars and workshops. In addition, the center tracks potential “breakthrough” applications on a sector-by-sector basis to disseminate them as best practices and ensure their expansion among SMEs throughout the country.

Source: EC, National Initiatives: Netherland Broadband Land (n.d.).
Chapter 6. Driving Demand for Broadband Networks and Services

6.3 Affordability

In identifying demand-side barriers to broadband adoption, policymakers around the world have identified affordability as one of the main reasons that people do not use broadband services where they are available. The Pew Internet and American Life Project, as well as the U.S. Department of Commerce, illustrate the importance of lack of affordability to those in the United States who do not subscribe to broadband at home.523 Prices for purchasing equipment and services remain a significant barrier for many consumers, especially in developing countries. Research by Ovum in 2010 showed that prices for broadband services are up to three times higher in 15 emerging markets than in developed countries, despite lower wage levels in the emerging markets.524

There are various components that impact the cost of broadband, including installation and ongoing service fees, as well as the prices of devices to access and use broadband services. In many developing countries, as well as among the low income populations in developed nations, both the cost to acquire a broadband device and the cost of connection and service is often substantial relative to income levels. While potential users may have the necessary digital literacy skills, they may be hampered from making effective use of broadband services without affordable connections, services and devices.

Part of the government's efforts, therefore, may also focus on supporting users that want and would benefit from broadband but cannot afford to pay prevailing commercial prices. This can apply to equipment (e.g., computers), initial installation (up-front costs), remaining connected to the networks (fixed periodic charges), or using the networks to access services. One way to do this in a market context is by subsidizing providers to offer service to target population groups at less than prevailing prices. Another way is to provide subsidies directly to target users for the specific purpose of helping them pay for broadband. Yet another approach is to include broadband in lump-sum income support to households. These approaches have been used extensively in a wide range of countries to support the use of telecommunications, electricity, transportation, and water supply, as well as in helping people pay for rent, food, health care, and other essential expenses.

The rationale for using subsidies to overcome obstacles to broadband affordability is two-fold: (1) greater deployment and use of broadband services is an important driver of economic growth, and (2) the value of network services in general, and broadband services in particular, increases as more people participate. Possible measures to consider include:

- Subsidizing the purchase of devices or computers, by means of government financing or bulk procurements, vouchers, or distribution of devices;
- Introducing tax credits for the purchase of devices or computers;
- Establishing locations for shared or community access to computers and other devices to facilitate the use of broadband services; and
- Introducing measures that reduce or eliminate taxes on broadband service so as to reduce the final price paid by consumers.525

Colombia’s Plan Vive Digital, for example, addresses cost issues by making connection devices more available to the general public by eliminating customs tariffs; making access to credit for the acquisition of terminals more flexible; eliminating the VAT for Internet service; and redirecting landline subsidies toward Internet subsidies.526
6.3.1 Device Ownership

The realization that demand for communications services, including broadband, does not generally increase if citizens do not have access to a PC or other broadband-enabled device has spurred policymakers around the world to introduce measures to facilitate ownership of devices or computers (see Box 6.4). The range of broadband devices; it includes more traditional means of access, such as PCs and laptops, as well as mobile devices including cellular phones, smartphones and tablets.

Box 6.4. Device Price Trends

1. **New computers**: Prices have dropped more than 90 percent over the past decade for purchasing a computer capable of multimedia functions and Internet connectivity, as shown in Figure 6.6.

![Figure 6.6. Prices of computer hardware in the United States, 1992-2009](source)

2. **Netbooks**: The appearance of netbook computers in 2007, which are smaller, inexpensive laptop computers, opens new possibilities for additional affordable devices for broadband connectivity. Prices for netbooks have fallen substantially since their introduction to the market. For example, between 2008 and 2009, the price of certain netbooks dropped dramatically in the United States, from nearly USD 500 to just over USD 200 in 12 months.

3. **Smartphones**: Entry-level smartphone prices have reached the USD 150 range, and are expected to drop further to the USD 80 level by 2015.

4. **Refurbished computers**: The purchase of refurbished computers, made possible by the donation of obsolete or malfunctioning computers, allows consumers to buy two or three computers for the price of one new model; such computers tend to come with longer warranties than their brand-new counterparts.
For many citizens in developing countries, the cost of even a discounted computer is prohibitively expensive. For example, Figure 6.7 compares income levels in Sub-Saharan African countries with the cost of broadband devices. The data show that a USD 400 netbook is more than the annual per capita GDP in nine sub-Saharan African countries. In these situations, direct distribution of low-cost devices has been used as a way to overcome the price barrier.

Figure 6.7. Cost of User Devices Relative to Per Capita GDP in Selected Sub-Saharan African Countries

![Graph showing cost of user devices relative to per capita GDP in selected Sub-Saharan African countries.]

Personal Computers, Laptops, and Netbooks

Programs to subsidize the purchase of laptops or computers have taken many forms. A few examples of possible programs include tax breaks, government subsidies and the reduction in price of the device itself. A number of countries have provided fiscal incentives for individuals and businesses to purchase PCs, for example, by allowing pretax income to be used for these purchases. In Sweden, for example, the government established a tax rebate whereby employers could purchase computers for their employees to use at home. The program, which started in 1998, allows the purchase price of a computer to be deducted from salaries as monthly repayments over three years’ time. Home computer penetration reached the 90 percent level by 2006. Similar programs have been used in other European countries. Other governments, such as Korea (Rep.), China and Portugal, have provided financing or are directly leasing computers to low income families, students or other identified groups (See Box 6.5.).

Box 6.5. Promoting Digital Literacy through Primary and Secondary Schools

- **Korea (Rep.):** The Korean Agency for Digital Opportunity and Promotion (KADO) introduced a wide range of programs to promote digital literacy and access to computers, including subsidies...
for the purchase of PCs by low-income citizens. Established in 1999, this program aimed to provide low-cost PCs, partly through a purchase installment plan using the postal savings system and partly through a leasing program whereby government purchased 50,000 PCs and provided them to low-income families on a 4-year lease, with free broadband for five years. Low income students with good grades also receive free computers. Persons with disabilities and those receiving public assistance are eligible to receive free used computers.

- **China**: China subsidizes computers for those living in rural areas: families with a registered permanent rural residence can obtain a 13 percent subsidy if they purchase an eligible PC. Vendors compete for approval to sell computers under this program and their maximum prices are limited under the terms of the approval. While there is a direct government outlay to pay for the 13 percent subsidy, the government’s costs are at least somewhat offset by the taxes collected on all economic activity associated with the manufacturing, marketing, sale and distribution of these computers, much of which also takes place within China.

- **Portugal**: Portugal has launched two successful low-cost computer projects as part of its government program to promote broadband—the *e-escola* (e-school) program and the *e-escolinha* program. The *e-escola* program, initiated in June 2007, distributes laptops with broadband Internet access to teachers and secondary school students. By September 2010, the program had distributed over 450,000 laptops throughout the country. The laptops are sold by telecommunications providers at EUR 150 (USD 220) with a EUR 5 discount over the basic monthly fee for 3, 5, and 7.2 Mbit/s connections. Lower-income students get the laptops for free with broadband connectivity at 3 Mbit/s for between EUR 5-15 per month. *E-school* is subsidized by the fees mobile operators paid for 3G licenses. In July 2008, the government in partnership with Intel launched the *e-escolinha* project to produce a Portuguese version of the Intel Classmate (the “Magalhães”). The project calls for distributing the computer to 500,000 primary school students; by September 2010 over 410,000 computers had been distributed.

Reducing the cost of devices, particularly laptops, has also been successful in increasing device and broadband usage. One notable program to promote the spread of low cost laptops in schools is the One Laptop Per Child (OLPC) initiative. The cost of the devices was predicted to drop to around USD 100 under this program. Although the OLPC initiative has experienced some significant setbacks, it has led to increased availability of lower-cost devices around the world. Uruguay has had some of the greatest success with the OLPC program, with all of its primary students receiving their own laptop by 2009. Some of the corporate participants that supported the initiative have since gone to market with their own low-cost computers, thus providing countries with additional options. The main commonalities of such devices, regardless of the brand or specific functionality, are a relatively low price (less than USD 300 for the device), a flip or clamshell design and small size (e.g., screen size less than ten inches).

Box 6.6. Trends in Low-Cost Devices

- **Classmate**: Developed by Intel as a “mobile personal learning device for primary students in emerging markets,” the Classmate was introduced in 2006. The second-generation Classmate is built around an Intel processor and has “kid-friendly” design. Features include hardware-based
theft protection, Wi-Fi and a battery life of between 3.5 to 5 hours. The Classmate runs Windows XP or Linux and is available in clamshell or convertible designs. Intel has licensed the technology to various manufacturers.

- **Asustek**: The Taiwanese computer manufacturer introduced the *Eee* PC (“Easy, Exciting and Economic”) notebook in October 2007. Although not strictly designed for the educational environment, the *Eee* PC is a portable laptop that uses flash drive storage. Entry-level models are price-competitive.

- **Mobilis**: Manufactured by the Indian company Encore, Mobilis has touch-screen capabilities, a six hour battery life, a carrying case and a full-size, flexible, roll-up keyboard.

- **ITP-C**: This is a touch-screen tablet computer with Wi-Fi using the Windows CE operating system. An external keyboard can be connected via USB port. It is manufactured by ITP Software Ltd., based in Israel. It is being used in school projects in Argentina and Chile.

Mobile Devices, Smartphones, and Tablets

Mobile phones have taken the world by storm, with average mobile penetration rates in 2010 of 68 percent in developing countries, and 116 percent in developed countries. Regionally, Africa has 41 percent penetration, Arab States 79 percent, Asia and Pacific 68 percent, CIS 132 percent, Europe 120 percent, and the Americas 94 percent. In recent years, mobile service providers have begun to offer broadband services in addition to the original voice telephony and narrowband data services.

A business model that has contributed to the explosive growth of mobile telephony throughout much of the world is the “subsidization” of the mobile phone by revenues from subscriptions. Operators generally offer cheaper handsets subject to the consumer signing up for a one- or two-year service contract. Often, high early termination fees are linked to such contracts to recover the remaining cost of the subsidy, if required. Besides device affordability, ease of use through pre-paid services has also been one of the key benefits attracting low-income customers, offering them the ability to control their expenditures, being able to switch to just receiving calls in times of economic difficulty, simple sign-up, and other features that have given mobile telephony an edge in the marketplace over traditional wireline telephone service. In exchange for a two-year data contract, consumers can obtain cellular modems and sometimes even netbook computers with no up-front charge. Primarily, these offers are contingent on signing a contract for service. In Europe, studies show that the practice of bundling the cost of a laptop with an access plan is leading to robust sales in mobile access subscriptions. Thus, for example, global demand for mobile broadband pushed European operator Orange’s mobile broadband customer base, including smartphone customers, to 23.2 million at the end of September 2008, which represented an 81 percent increase from the previous year. For U.S.-
based AT&T Mobility, which started subsidizing laptops in 2008, data revenue jumped 51.2 percent in the fourth quarter of 2008 compared with the same quarter in 2007. It recorded USD 3.1 billion from data revenue alone.540

Eventually, less expensive devices are likely to be offered, along with simplified or even no contractual commitments to purchase the broadband service, but simply with the expectation that such service will be purchased on a prepaid basis in sufficient quantities by enough customers to justify the subsidy. Already in some countries, mobile users own a USB modem enabling broadband service, but not necessarily a laptop or computer; they access the Internet at a shared computer. Throughout Africa (e.g., in Tanzania, South Africa, Swaziland, Cameroon and Kenya), operators sell subsidized modems with service contracts for 3G (or EDGE) service, following the mobile phone subsidization business model. Since most users are pre-paid, however, most of the mobile broadband uptake is prepaid as well, and does not involve service contracts. In South Africa, bundled broadband products have started to emerge over the last few years, which typically include a PC, laptop or netbook with a standard data bundle based on a 24 or 36 month contract. Incumbent operator Telkom offers its “Do Broadband” Acer netbook in a bundle, while Vodacom and MTN also have notebook and netbook offerings. \textit{iBurst} is also selling 1 GB and 2 GB notebook bundles.541

Recently, South African operators have been aggressively pursuing customers with attractive pricing of bundled mobile broadband packages. Vodacom, for example, launched a “2GB + 2GB” promotion in April 2011 for ZAR 149 (USD 22) per month, offering consumers on a twelve month contract a 2 GB per month data allowance, a 7.2Mbit/s HSPA modem and an additional 2 GB of “Night Owl bandwidth” that can be used between midnight and 5am. Subscribers also get free technical setup support plus a mailbox with 5 GB of storage.542 South Africa is one of the few countries worldwide that still maintains monthly data caps on fixed line broadband, though they are more common for mobile broadband.

The mobile phone subsidization business model is not without its detractors, and the practice is illegal in some countries. Concerns include: whether the total cost of ownership is higher over time with subsidies and contracts versus scenarios involving unsubsidized phones and lower service prices; device locks that are used to prevent phones from being used with another operator’s service; the limited variety of device models that operators are willing to subsidize; and high fees that consumers may pay if they want to terminate their contracts early. Policymakers considering some type of subsidy program will need to take such concerns into account as they analyze various subsidy approaches.

6.3.2 Service Costs

Programs to provide affordable broadband devices to users are important, but only solve part of the problem. The longer term issue for adoption of broadband services is the ongoing cost of receiving service. Some users may not have the means to pay for broadband access on an ongoing basis, particularly in countries where broadband service prices are still high. More information about support programs that could help users get and keep their broadband service can be found in Chapter 4, which addresses universal service funds and obligations.

In order to address the issue of service cost, in 2001, the Kenniswijk project in the Netherlands proposed a two-part subsidy program for connecting users. Notably, a year after the subsidies ended, 80 percent of subscribers were still using the service.

- \textit{Initial Connection}. A subsidy would be paid directly to the consumer and the administration would be undertaken by a government agency. This part of the subsidy would be used to encourage people to get internet connections.
• **Ongoing support** would be administered by the companies that win the contract to build the broadband infrastructure. They would receive money from the government and would then distribute the full amount to individual consumers in the region in the form of a lower connection tariff per household. It was thought that this too would help encourage people to adopt and keep broadband access.\(^{543}\)

6.3.3 Shared or Community Access

In addition to using community access centers as a way to promote awareness of broadband, shared or community access can be a means of facilitating broadband affordability. Establishing locations where users are able to share broadband access is an important tool to enable broadband adoption and drive demand for otherwise willing and skilled persons who lack the financial means to purchase devices or pay long term (contract) access charges. Public access facilities can be: 1) government access facilities operated by public libraries, post offices, municipalities or schools or 2) for-profit Internet cafés or LAN gaming arcades operated privately. Both models are seen in abundant numbers throughout the world, including in developing countries. Public funding for access facilities may be particularly justified in localities where privately operated telecenters or Internet cafés are not yet available.

These facilities provide an additional benefit as they can also be places where training in digital skills takes place, such as those discussed in section 6.2. Figure 6. illustrates how important shared access facilities are in providing Internet access. It shows the place of access for Internet use on the basis of household surveys conducted in 12 countries in Latin America. In seven of the 12 countries, more persons access the Internet at public access facilities than those that do so at their own households.\(^{544}\)

![Figure 6.8. Latin America (12 Countries): Internet Use by Persons Aged 15 To 74, According to Place of Access, 2007-2009 (Percentages of Total Users)](image)

<table>
<thead>
<tr>
<th>Country and year</th>
<th>Household</th>
<th>Public access</th>
<th>House of another person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil 2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chile 2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costa Rica 2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecuador 2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Salvador 2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honduras 2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico 2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panama 2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraguay 2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru 2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uruguay 2009</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In India, the government is establishing 96,000 Common Service Centers (CSCs) with broadband access that are configured to enable video, voice and data in the areas of e-governance, education,
teledicine, entertainment and other private uses.545 E-government services from the national, state and local governments are all available at the CSCs. One Indian state, Kerala, has implemented FRIENDS (Fast Reliable Instant Efficient Network for Disbursement of Services) as a single-window facility with at least one center in each district of the state. Currently each center has 800 to 1,000 visitors daily. Citizens can make payments for various government-related services, obtain e-literacy training, and a help desk is provided to answer questions or register complaints.546 In the original implementation of the program, 95.6 percent of participants said they lost their fear of computers because of the program, 30.5 percent felt they gained more respect in the community because of their computer knowledge and 9.2 percent signed up a child in the family for a computer-literacy class.547

6.4 Attractiveness

In order to generate demand for broadband, consumers must not only be aware and able to afford it, but they must also see the relevance and attractiveness of it. This is facilitated by ensuring that the market provides sufficient choice and diversity of services, applications and content to appeal to all consumers. Actions to boost broadband demand are generally aimed at both consumers and businesses to encourage them to produce content, services and applications.548 This section makes a distinction between services and applications, but this distinction is becoming blurred as technologies develop and services and applications begin to overlap and merge, as noted in Chapter 1. While it may be arguable whether something is more appropriately classified an “application” or “service” for this chapter, the particular category is less important than the fact that attractive services and applications both significantly increase demand.

6.4.1 Services to Drive Broadband Demand

Services refer to the basic connectivity function of providing access to the Internet, as well as value-added features that broadband operators include with the broadband subscription and that meet specific quality guidelines. Within the broadband ecosystem, the availability of services is an important factor that influences and possibly drives demand. This level of demand, of course, will be affected by the attractiveness and affordability of the service offerings.

Internet

A broadband subscription provides a high-speed connection to the Internet. The way the subscription is provided can impact attractiveness and will depend on the technology and regulatory or business considerations. This includes whether the broadband subscription can be purchased on its own or requires a subscription to an underlying transport technology. For example, in the case of digital DSL, a telephone line is required. Subscribers have typically been obligated to pay a monthly rental for the telephone line in addition to the broadband subscription even if they do not use the telephone line for anything else but broadband. This adds to costs and may require an extra bill, discouraging users from taking up the service. Some operators include the telephone line with the broadband subscription so there is no separate bill. In a few countries, the cost of the physical broadband connection is billed separately from Internet access. In other words, the user needs to pay one bill for a broadband connection and another bill to an ISP for Internet access.

A number of factors make a broadband subscription more or less attractive to potential users. One important factor is speed. Though some consider any “always-on” subscription of at least 256 kbit/s to be broadband, in practice speeds must be above a certain threshold to use desirable applications such as video viewing or gaming. A variety of offers with different speeds provides more choice to the user. Other factors to consider are restrictions that the broadband providers may impose to limit capacity.
(e.g., data or usage caps). Some operators distinguish between domestic and international use by having no cap or a higher cap for traffic to national sites, and a low cap for access to sites hosted abroad. One issue with caps is that users often do not understand the relation between volume and their usage needs. Users can easily underestimate how much data they will use, particularly if they access a lot of video services or use peer-to-peer download services (some of which may run in the background). This makes it difficult for them to know which package to select when they vary by data caps. Some operators cap usage through time rather than data volume (e.g., monthly subscription of 20 hours).

Increasingly, governments are responding to data caps and “throttling” practices by requiring service providers to disclose their network management practices clearly, in order to protect consumers and improve the overall broadband experience (see the discussion of network neutrality in section 3.7). Regulators have also instituted other measures, such as quality of service monitoring and alerting users to sites where they can test their broadband connection for speed or throttling (see section 5.7.3 for more discussion of quality of service issues).

Voice

Voice telephony continues to be a popular service, if not the most popular service worldwide. A growing number of broadband operators offer Voice over Broadband (VoB) service, which is a managed service (unlike VoIP, which is generally considered as an “over the top” application). VoB provides the same quality as a traditional fixed telephone and often provides other value-added features such as call waiting, voice mail and speed dialing, as well as the ability for users to monitor these features online via the provider’s web site. The price structure for VoB is often made attractive by including unlimited national calls for a flat rate or even including free national calls with the broadband service subscription. Since the service works through the broadband modem, users do not need to be connected to the Internet nor do they even need a separate Internet subscription.

There are a number of regulatory issues related to VoB. The most basic is whether or not a country’s laws and regulations allow it. Where VoB is legal, there are other regulatory considerations often driven by the requirements placed on legacy wireline telephone networks. One is the requirement for users to be able to make emergency calls. Other regulatory requirements relating to consumers can include access for those with disabilities and number portability. The latter can be influential in encouraging users to switch from traditional telephone services to VoB.

Video

IP networks allow video services to be provided over a variety of networks. This has allowed broadband operators to provide IPTV or video on demand (VoD) services. The ability to provide IPTV and/or VoD can make operators’ broadband services more attractive, especially when other features are included such as access to special programming not available elsewhere.

Television as a managed offering with a broadband subscription takes many forms. Some operators require IPTV to be bundled along with the broadband subscription while others offer IPTV on a stand-alone basis. Others have developed more extensive video service offerings, including British Telecom (BT) in the United Kingdom, which offers its Vision service that seamlessly integrates free-to-air digital television programs with a digital recorder and VoD feature. Some operators provide additional features such as radio programming and the ability to watch programming on computers, tablets, and mobile phones in addition to the traditional television set.

The ability to bundle television with broadband Internet service is often subject to technical and regulatory considerations. In the case of IPTV, users need to have a minimum bandwidth to use the service. Some countries require companies that provide television service to obtain permission or a
specific type of license. Sometimes permission is required from local authorities. Conditions vary, but in general television service is subject to a higher level of regulatory oversight than broadband service. Regulatory limitations have sometimes meant that operators can only provide a delayed service rather than live programming, making their offer less attractive.

Bundling

IP-based technology and digitalization of media allow a single network to provide a variety of voice, data and video services. The ability to offer multiple services has led operators to bundle services together. This often includes a price reduction in the total cost of the service (i.e., the bundled prices is less than the cost of buying the same services individually) and the benefit of receiving just one bill. “Double-play” refers to a combination of broadband Internet and some other service, “triple-play” refers to the ability to provide three services, whereas “quadruple play” also includes mobile service (see Table 6.2 for bundling trends in Switzerland).

Bundling offers can be attractive to consumers in terms of lower costs and a single invoice. However, some consumers may only want one service from a provider and therefore would need an “a la carte” option and not be obligated to purchase additional services. In any case, a service provider that is only allowed to provide Internet access is at a disadvantage versus converged operators since consumers are increasingly interested in receiving multiple types of communications services offered through bundles.

Table 6.2. Subscriptions to bundled services, Switzerland

<table>
<thead>
<tr>
<th>Service Description</th>
<th>2008</th>
<th>2009</th>
<th>Variation 08-09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireline telephony + Broadband Internet</td>
<td>377,477</td>
<td>484,326</td>
<td>28%</td>
</tr>
<tr>
<td>Broadband Internet + Television</td>
<td>59,306</td>
<td>74,862</td>
<td>26%</td>
</tr>
<tr>
<td>Broadband Internet + Mobile telephony</td>
<td>42,126</td>
<td>66,482</td>
<td>58%</td>
</tr>
<tr>
<td>Wireline telephony + Broadband Internet + Television</td>
<td>85,417</td>
<td>136,082</td>
<td>59%</td>
</tr>
<tr>
<td>Wireline telephony + Mobile telephony + “Broadband Internet”</td>
<td>2,767</td>
<td>2,309</td>
<td>-17%</td>
</tr>
<tr>
<td>Mobile telephony + Broadband Internet + Television</td>
<td>236</td>
<td>328</td>
<td>39%</td>
</tr>
<tr>
<td>Wireline telephony + Mobile telephony + Broadband Internet + Television</td>
<td>3,043</td>
<td>6,130</td>
<td>101%</td>
</tr>
</tbody>
</table>

Government

Government services and applications fall into the following broad categories: 1) making government information available; 2) conducting transactions with the government; and 3) participating in the political process. Governments can enhance broadband demand by acting as model users or anchor tenants by promoting e-government services and broadband-related standards, putting content online and supporting the development and distribution of digital content by other players. In addition, e-government services and broadband applications can help organize the public sector more efficiently (in areas such as public safety, for example).

All governments collect and produce information. Applications at varying levels of sophistication can be developed to make this information available, thereby increasing demand for broadband services as those applications are used by consumers. A 2008 OECD study contends that policy initiatives to foster more sophisticated government online services are becoming popular. This includes expanding secure government networks, putting administrative processes and documents online, supplying firms and citizens with more cost-effective ways to deal with the government (including once-only submission of data) and assigning firms and citizens a single number or identifier to conduct their relations with
Government information that has been made available online in various countries includes: legislation, regulations, litigation documents, reports, proposals, weather data, traffic reports, economic statistics, census reports, hearing schedules, applications for licenses and registrations, and even feeds from surveillance cameras. With always-on, high-bandwidth networks, online interactions between the government and businesses are also becoming more sophisticated, with some OECD countries offering one-stop platforms for government procurement, bidding information, etc.

E-services that improve openness and access to democratic institutions are also becoming feasible as a result of increases in broadband transmission capacity. Examples include Internet broadcasts of parliamentary debates and agency meetings, or the use of multi-media content within the educational or cultural sector. Such applications allow citizens greater participation in the process of governance. Applications for polling, voting, campaigning and interaction with government officials can increase the demand for broadband services. In the United States, for example, two models of e-government citizen participation are emerging. One is a deliberative model where online dialogue helps inform policy making by encouraging citizens to scrutinize, discuss and weigh competing values and policy options. The other is a consultative model that uses the speed and immediacy of broadband networks to enable citizens to communicate their opinions to government in order to improve policy and administration. Actions to encourage citizen participation through e-government include:

- Connecting citizens to interactive government websites that encourage citizen feedback and participation in policy making, design and innovation.
- Encouraging library users to participate in online dialogue on topics such as healthcare and the economy.
- Participating in government experiments with a variety of tools, including “wiki government” where citizens participate in peer review.
- Educating citizens about their civic role and providing opportunities for them to interact with government agencies and officials using tools that fit individual or specific community needs.
- Partnering with government officials and citizens to facilitate well-informed and productive discussions online.
- Providing citizens the ability to create “my e-government” so they can personalize their interaction with government agencies and officials.
- Creating “online town halls” for e-democracy for agenda setting and discussion of public issues, as well as to promote accountability in the provision of public services.

As services/applications are developed to facilitate transactions with the government, those processes can be simplified and made more efficient, both for the government and for its citizens. A 2008 OECD study reports that since 2005, a large number of countries have moved towards citizen-centric government (i.e., measuring user satisfaction and user-friendliness) with the mainstreaming of e-services via integrated multi-channel service delivery strategies.

A major goal of developing such services is to make government information more readily available, as well as to increase transparency of government activities. The Netherlands is a leader in creating digital content and offering it via online government services. In 2006, in an effort to support the development of broadband, the Dutch government decided to give all citizens a personalized Web page—the “Personal Internet Page (PIP) project”—where they can access their government documents and social security information, as well as apply for grants and licenses. In the United States, the E-Government Act of 2002 was designed to “promote use of the Internet and other information
technologies to provide increased opportunities for citizen participation in Government. These opportunities range from online tax filing options to Social Security Administration application forms, and more recently include electronic passport applications. In addition, the U.S. government embraced e-government as an educational tool, particularly in providing online education programs for new immigrants seeking citizenship and for school support programs within the Department of Education. In Colombia, the 2010 Plan Vive Digital aspires to create a digital ecosystem by 2014 that would achieve several demand-related goals (Box 6.7).

Box 6.7. Colombia 2010 Plan Vive Digital

In Colombia, the 2010 Plan Vive Digital is set to establish a digital ecosystem by 2014 that encompasses supply (infrastructure) and demand (users, services and applications). With respect to the latter, the plan seeks to make broadband more attractive to users and businesses in several ways:

- All national government entities and half of local government entities to provide services online;
- Support the development of applications for micro and SMEs to enable half to use the Internet;
- Assist the consolidation of the IT and BPO industry;
- Triple revenues for the creative digital industries;
- Create mechanisms for public and private financial leverage for Colombian companies that develop applications and content; and
- Strengthen national and regional public broadcasting services, incorporating the use of ICT.

As has been described in Chapter 3, governments may need to reform certain legal practices in order to conduct e-government transactions electronically. For example, laws may need to be modernized to define and recognize electronic signatures, electronic filings and certification of electronic documents. These reforms will make it possible for a broad range of transactions to be conducted over broadband networks. Such reforms must also be accompanied by awareness campaigns to help users gain knowledge of e-government services/applications. OECD governments and industry, for example, have developed campaigns to educate consumers about risks to Internet security, instructed consumers on how to protect themselves against fraudulent practices, and put into place regulatory measures to promote a culture of security.

Health

E-health involves a variety of services and tools provided by both the public and private sectors, including electronic health records (EHRs) and telemedicine. Broadband healthcare services and applications have the potential to lower costs and lead to better health outcomes. A 2010 ITU Discussion Paper argues that citizens in rural areas, as well as those with limited mobility, will be able to access specialized care that previously was not available to them using e-health. For example, broadband capabilities are essential to medical evaluation and other medical applications that use imaging extensively. High-definition video consultations allow rural patients and immobile patients (e.g., incarcerated or nursing home residents) to be seen by specialists in a timely manner when urgent diagnosis is needed and the specialists are not able to travel to where the patients are located. Other e-health services and applications include digital patient records; remote monitoring, where caregivers monitor key vital signs from a remote location, such as for diabetes or congestive heart failure patients; and access to medical information materials and advice.
With the explosion of mobile devices in low-income nations and the relative lack of wireline broadband penetration, mobile-health (m-health) is establishing a new frontier in health care in those countries. Although basic voice and data connections are useful to improving health and medical care, broadband connectivity is necessary to realize the full potential of e-health and m-health services, particularly in rural communities. In addition, a greater range of services becomes possible with more uniform, faster, and more affordable broadband access; greater access and coverage expands the “subscriber” base, building volume, creating incentives for players, and helping push sustainable m-health applications beyond simple one-way data services. As a result, improvements in telemedicine and other e-health initiatives will rely on increasing bandwidth capacity, more storage and processing capabilities, and higher levels of security to protect patient information. Cape Verde, for example, has been exploiting growing broadband connectivity by connecting two of its hospitals to the Pediatric Hospital of Coimbra, Portugal. The telemedicine system supports remote consultations through videoconferencing. One goal is to reduce the number of Cape Verdeans that have to travel to Portugal for medical service. In addition to the Cape Verdean hospitals, there are also two Angolan hospitals connected to the network, and over 10,000 remote consultations have been carried out. In India, Ericsson and Apollo Telemedicine Networking Foundation (ATNF) signed a Memorandum of Understanding (MoU) to “implement telemedicine applications over broadband-enabled mobile networks” in the summer of 2008. The initiative is anticipated to both decrease costs and improve health care outcomes, particularly for rural populations.

Financial Services
Online banking has evolved considerably, with the Internet becoming an integral part of the delivery of banking services around the world. It is generally recognized that e-banking services can provide speedier, faster, and more reliable services to customers, and thus also improve relationships with customers. Although many types of Internet connections have online banking capabilities (e.g., some m-banking transactions are conducted with narrowband SMS messages), high-speed connectivity is essential for effective e-banking. A 2007 study, for example, showed that in the United States, banking online was performed by 66 percent of households with a home broadband connection versus 39 percent of households with a narrowband connection. Delivering financial services to low-income users through e-banking can also offer the potential to dramatically decrease operational costs, improve the quality of financial information, allow for “video chats” with bank representatives and make banking for low-income users more profitable and less risky for mainstream financial institutions. For these markets in particular, mobile money services have proved to be of particular importance. In countries such as Afghanistan, Bangladesh, Kenya, Indonesia, Pakistan, the Philippines, and South Africa, various forms of m-banking services are expanding the financial services frontier. These services allow users to make payments and remittances, access existing bank accounts, conduct financial transactions, engage in commerce, and transfer balances.

6.4.2 Applications to Drive Broadband Demand
Among demand facilitation factors, applications (i.e., function-specific software using a broadband connection to deliver content to users) have a tremendous impact on adoption. If there are no compelling applications to use the platform, users will find no value in broadband and will not use it. Applications add value to broadband, as they provide tools and services that are tangible and valuable for both consumers and businesses. This increases the value proposition of broadband and the chances of attracting potential users to try the service. Evidence suggests that once consumers try the service, they are more willing to use it more frequently and subscribe to it. Additionally, the rise of social networking sites and the rapid increase in the amount of user-generated content being produced
indicates that such applications can be strong demand drivers. Whether a user is uploading videos for friends and family or actually developing applications for use on a mobile device (available in various “app stores”), it is clear that individual user innovation can provide a strong incentive for people to subscribe to broadband services—whether for personal or professional reasons.

The development of local content is important as people are more likely to be attracted to content that is developed in their local language and is designed for their local culture. With greater local content, local SMEs and consumers can better understand the benefits of broadband. For example, locally developed video games played a key role in broadband diffusion in Korea (Rep.), which suggests that applications that address local needs and culture is critical for broadband diffusion. Reflecting this concern, in 2010, the Kenya ICT Board began a grant program with KES 320 million (USD 3.7 million) to promote the development of relevant, local digital content and software by targeting developers in the film, education, entertainment, and advertising industries.

The increased availability of broadband-enabled applications in government services, healthcare, education and finance is also expected to boost the overall demand for broadband services. Similar to how a large merchant plays as an “anchor tenant” in a shopping center by drawing in customers who also purchase from smaller shops in the same shopping center, developing and implementing specific broadband “anchor” applications will help to attract new broadband users, who will additionally make use of other broadband services as a result. As applications are designed and implemented, the issue of accessibility should also be kept in mind, so that those with disabilities are not excluded. The UN’s Global Initiative for Inclusive Information and Communication Technologies (G3ict) offers support in this area and helps highlight how e-government and other applications can be kept fully inclusive.

Social Media and Web 2.0
“Social media” (e.g., YouTube and Facebook) are applications that facilitate social interaction, using web and mobile technology. YouTube, for example, is one of the most widely-used social media applications and requires broadband capabilities to be effective. Users generate video content and upload it and share it with others. In 2010, some 35 hours of footage was uploaded to YouTube every minute, with over 13 million hours uploaded in total over the year. “Web 2.0” is closely related to social media and is a term generally associated with applications that feature user-generated content and facilitate collaboration among users. Web 2.0 applications—including Web-based communities, hosted services, Web applications, social networking sites, photo and video sharing sites, wikis, blogs, mashups and folksonomies—are interoperable, user-centered, and collaborative. Unlike the “traditional Web,” they allow users to generate, distribute and share content in real time and typically require broadband connectivity. The availability of social media and Web 2.0 applications is stimulating demand and is an important factor to bear in mind in developing demand creation or facilitation strategies.

Social Networking
Social networking applications allow people who share interests to initiate and maintain connections, communicate with one another via various media, including text, voice and video, interact through social games and share user-generated and traditional media content. The highly personalized, easy, and flexible nature of social networking applications makes them some of the most-used online tools and one of the main drivers of broadband demand. Since these websites tend to offer at least limited functionality with dial-up or other low bandwidth Internet connections, they help to drive broadband demand among users seeking to take full advantage of the website applications. Additionally, Web 2.0 applications have strong network effects in which websites become more useful as more people participate (e.g., Wikipedia entries or reviews of products on Amazon). Non-adopters who may not have
found broadband to be relevant in the past may seek out broadband services in order to interact with family and friends, as well as discover and create other engaging user-generated content.

Mobility is a key component of social networking. As of September 2011, of the over 750 million active Facebook users, more than 250 million access Facebook through their mobile devices and use Facebook twice as much as their non-mobile device counterparts.586 Indeed, evidence already exists that social networking applications are driving mobile broadband use in many countries. In the United Kingdom, mobile operator Hutchison 3G released traffic statistics showing the amount of data customers use when browsing social networking sites.587 The operator found that social networking accounts for most mobile broadband usage in the country with Facebook the most popular application. With the number of mobile broadband users expected to hit the one billion mark in 2011, the value of social networking to drive demand for ever-increasing amounts of data is substantial.588

Particularly in developing countries, where mobile broadband is reaching more people than wireline broadband, social networking applications accessed through mobile devices are likely to be a major driver of demand for broadband access. In Africa, for example, the number of mobile broadband subscriptions is more than double the number of wireline broadband subscriptions.589

An example of the power of social media can be seen in its role in the 2011 so-called “Arab Spring” uprisings. Protest organizers used websites such as Facebook, Twitter and YouTube in addition to texting and other narrowband technologies to coordinate protest activities. Social media facilitated the spread of information about citizens’ grievances, through YouTube videos and conversations on social websites, when official or traditional media sources may not have given those grievances much or any coverage. These online tools also enabled the organizers to spread awareness and increase participation and attendance at demonstrations faster than more traditional media could allow.

Indonesia is another good example of mobile broadband’s use in social networking. It has become the world’s second-largest Facebook country, reaching 39 million users as of June 2011.590 One of the reasons for Facebook’s popularity in Indonesia is that it is “a way to establish social status, success and as a platform for self-promotion.”591 This resonates with many people in developing countries where Facebook has emerged as the leading application.592 Indonesia’s hunger for social networking extends to Twitter, where it has the world’s highest penetration: around one-fifth of Indonesian Internet users access the microblogging application.593 All of this has spurred a demand for faster connectivity, with mobile broadband speeds rising to 40 Mbit/s.594 Since social media focuses on user-generated content, that content can be quite localized, meaning it is in local languages and character sets and on topics which are locally relevant. Having localized content is an important part of stimulating demand, as addressed in section 6.4.3.

Social Collaboration:Wikis, Mashups, and Crowdsourcing

Web 2.0 applications allow for more than simply connecting with others and sharing information—they also allow for people anywhere in the world to create content through blogs and podcasts, to co-create content, such as through wikis, to link different types of content from different sources together to create new media (e.g., mashups) or to create social tags to identify folksonomies. Although perhaps to a lesser extent than social networking applications, these social collaboration tools help to increase the demand for broadband services by engaging users and making the online experience more personalized and flexible. They draw on the idea of the “wisdom of the crowd,” which refers to practices where opinions and information are collectively created rather than arrived at by the views of a single or small group of experts.

Wikipedia is a well-known example of such social collaboration. The popular collaborative encyclopedia is multilingual, web-based, free to access and written by Internet volunteers, most of whom are
anonymous. Anyone with Internet access can write and make changes to Wikipedia articles, and there are currently more than 91,000 active contributors around the world, of which nearly 60 percent create and edit non-English articles.595 Launched in 2001, Wikipedia is now available in 281 languages—the English Wikipedia contains over 3.6 million distinct articles, followed by German with 1.2 million and French with 1.1 million.596 Users can also create mashups, which are interactive Web applications that integrate content (e.g., video, text, audio or images) retrieved from third party data sources in order to create new and innovative services and applications.597 Mashup websites tend to rely on external websites that use open source application programming interfaces (APIs), which expose all of the instructions and operations in an application to facilitate the interaction between different software programs. Mashups may be as simple as a restaurant’s website embedded with a single API, such as a Google map to make it easier for customers to find it. Other mashups combine multiple APIs. For example, a web-based interactive restaurant guide could use APIs from sites with online reviews, photos, and maps to tell you the best places to eat in a given city and where to find them.

Crowdsourcing is a Web 2.0 application referring to the outsourcing of tasks to a large, undefined group or community (the “crowd”) through an open call for assistance, such as via Twitter, Facebook or a dedicated webpage. Following the 2010 earthquake in Haiti, the Crisis Map of Haiti used crowdsourcing to coordinate relief efforts on the island. Those in need could submit incident reports via the organization’s website, phone, SMS, email, Facebook, Twitter, etc., and thus request aid or even report missing persons. After being reviewed by volunteers, the reports were mapped with Global Positioning System (GPS) coordinates in near real-time on a map also showing shelter sites and hospitals. These tools helped speed search-and-rescue efforts and provide vital supplies to those most needing them. The events in Haiti provide a model for how to deal with future disasters, both natural and man-made, as well as demonstrating a practical application of Web 2.0 technologies.598

Collaborative Working Tools for Businesses and Institutions

Businesses and institutions are taking advantage of Web 2.0 applications (often referred to as “Enterprise 2.0”) to improve productivity and efficiency, as well as lower costs. Generally, Web 2.0 applications are not only less expensive, faster to deploy and more flexible than commercial or customized software packages, but also offer built-in collaborative workspace tools that enable people to interact across differences in time and space.599 These tools often center around “groupware” that allows multiple people to work together on projects and share documents, calendars and other data and to participate in video and audio conferences. Since Web 2.0 apps require large amounts of bandwidth to download and upload the various types of digital media, a broadband connection is essential.

Education and Web 2.0

Support for school connectivity programs, as addressed in section 6.2.1, can be strengthened through the use of Web 2.0 applications in education. Even where virtual classrooms or other e-learning tools are in use, Web 2.0 tools can replace or complement expensive Virtual Learning Environment (VLE) software to provide a more flexible approach through the use of blogs, wikis, and other collaborative applications. For example, a classic VLE involves the teacher sharing slides and resources with students through an enabling software program. Web 2.0 applications, such as Slideshare for presentations, Google Docs for documents, Flickr for images, and YouTube for videos, however, are capable of replicating the core functions of the VLE software at no cost to educators or students.600 Open source and cloud technologies also allow for more educational opportunities where fewer resources are available. For example, students without personal computers can complete assignments at a university computer lab or Internet café via Google Docs. Other services, such as Flat World Knowledge’s open source textbooks, allow professors to review, adopt, and even customize textbooks for their classes,
which students can then purchase in print format or view online for free, further reducing the cost of education. These tools increase the accessibility and availability of learning content through a range of platforms that offer a large variety of educational material. Further, Web 2.0 tools support new strategies for studying a subject matter by making available a host of dynamic tools for transforming content and displaying information in different formats, as well as contribute to diversifying and enhancing teaching methods. Students are able to have more personalized and flexible lessons targeting their specific needs and are able to learn valuable networking and community-building skills. Additionally, these tools allow collaboration among geographically dispersed groups and can facilitate intercultural exchange and cross-border, cross-institutional collaboration, while reduced costs allow for institutions in developing countries to compete with those in other areas.

6.4.3 Content to Drive Broadband Demand

Ultimately, what motivates people to buy broadband services and devices is that they believe broadband will enrich their lives, offer convenience, provide entertainment and improve their businesses. The network infrastructures or policies in place to expand broadband access are less important to end users on a day-to-day basis than the availability of relevant and useful online services and applications that allow users to access, create and share content. What Bill Gates said about the Internet in 1996 remains true today: “Content is King.” Attractive and useful content, and increasingly context (with the development of location based services, which require broadband access), are perhaps the most important underlying elements of broadband adoption.

Promoting Digital Content

“Digital content” is a catch-all for the myriad types of websites, applications and services available to broadband users. It can be based on text, audio, video or a combination of these. Much of the content available on websites today can be divided into three broad categories: 1) user-generated; 2) proprietary or commercial; and 3) open source. User-generated content includes social networking and things such as blogging, podcasting, Twitter updates, YouTube videos and Flickr photos. Addressed above, these forms of social media help to drive broadband demand by engaging users and ensuring the local and personal relevance of content. Due to the “bottom-up” nature of social media, policymakers can support the development of such content by taking a more hands-off approach in regulating it (see Chapter 3). They can also promote such services by becoming active users of such applications and services; more and more government agencies and even politicians are realizing the value of such tools in reaching out to citizens.

As opposed to copyrighted materials, open source content is available free-of-charge. In addition, the source code is also freely available to allow anyone to incorporate the content or application into new forms of media, such as in mashups. Open source content has led to the creation of a number of property rights systems that encourage collaboration by publishing source code and allowing other users to extend those applications and develop them further, with the proviso that the result should also be governed by the same open source property rights.
Promoting Local Content

Native English speakers currently account for the majority of Internet users around the world; thus, most web content is in English. Figure 6.5 shows the number of Internet users by language, which is a common metric for gauging the influence of different languages on Internet content. English continues to dominate, but the number of Internet users in China is quickly rising and expected to exceed the number of English language users in the next five years. Despite this shift, a significant obstacle to Internet and broadband use by non-English speakers is the scarcity of content in their own languages.

Figure 6.5. Number of Internet Users by Language

Efforts to create content that is relevant and interesting, using the local language and character sets, is expected to increase the demand for broadband services in local areas. For example, the Kenya ICT Board launched in 2010 a grant of KES 320 million (USD 3.7 million) to promote the development of relevant, local digital content and software by targeting entrepreneurs in the film, education, entertainment and advertising industries. The goal of the project is to increase Internet penetration and promote local content, which is viewed as a potential area for new revenues in the country.

In addition to direct grants for the production of local content, governments can support the development of local content and applications in other ways, such as the development of standardized keyboards, character sets and character encoding. This type of indirect intervention would impact on the content available by enabling users to create content in their own languages. Additionally,
translation and standardization of operating systems into local languages can help to facilitate the development of local applications that are relevant and comprehensible to local users. Governments can also play an important role in developing local content and local applications by directly creating local content and local applications in the form of e-government applications as described above.

Some forms of user-generated content, such as YouTube videos, face fewer barriers to expression as the speaker is recorded in his or her own language directly. YouTube has launched a localization system, where YouTube is available in 31 different local versions as well as a world-wide version. This helps to overcome some of the barriers in content reaching a possible community of interest, but not entirely, as content generated in languages other than those used in the 31 local versions or the world-wide version may encounter barriers in reaching an audience.

Nevertheless, it is likely that greater amounts of local content will continue to become available in the near term. For example, a website called d1g.com is a platform in Arabic for sharing videos, photos, audio, a forum, and a question and answer facility. Launched in 2007, d1g.com is one of the Arab world’s fastest-growing social-media and content-sharing websites, with more than 13 million users and 4.8 million unique monthly visitors. It has 15 million videos, and streams an extensive amount of Arabic videos—600 terabytes of data per month. Notably, nearly 100 percent of d1g’s content is user-generated, with a small amount produced in-house. d1g.com became the most popular Arab social-media site (after Facebook and Twitter) when a user created the “Egyptstreet” diwan during the Egyptian revolution. During that time, unique visitors rose from three million to five million per month, and visits per month grew from six million to 13 million.
Chapter 7. Global Footprints: Stories from and for the Developing World

7.1 Introduction

Developing nations face a number of broadband demand and supply side barriers. These include a shortage of wireline infrastructure, constrained inter- and intramodal competition, low income, and limited awareness. Developing countries also often face challenges such as weak regulatory and legal frameworks and significant differences between rural and urban areas. As a result, they typically lag more developed economies in broadband penetration (Figure 7.1), although there are exceptions such as some nations in the Caribbean or the Gulf States.

Figure 7.1. Global broadband subscriptions (per 100 people), wireline and wireless (active), 2010

<table>
<thead>
<tr>
<th>Wireline broadband subscriptions (per 100 people)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe and Central Asia</td>
</tr>
<tr>
<td>Latin America & the Carib.</td>
</tr>
<tr>
<td>East Asia and Pacific</td>
</tr>
<tr>
<td>Middle East and North Africa</td>
</tr>
<tr>
<td>South Asia</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
</tr>
<tr>
<td>World</td>
</tr>
<tr>
<td>High-income</td>
</tr>
<tr>
<td>Upper-middle-income</td>
</tr>
<tr>
<td>Lower-middle-income</td>
</tr>
<tr>
<td>Low-income</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wireless broadband subscriptions (per 100 people)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latin America & the Carib.</td>
</tr>
<tr>
<td>Europe and Central Asia</td>
</tr>
<tr>
<td>East Asia and Pacific</td>
</tr>
<tr>
<td>Middle East and North Africa</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
</tr>
<tr>
<td>South Asia</td>
</tr>
<tr>
<td>World</td>
</tr>
<tr>
<td>High-income</td>
</tr>
<tr>
<td>Upper-middle-income</td>
</tr>
<tr>
<td>Lower-middle-income</td>
</tr>
<tr>
<td>Low-income</td>
</tr>
</tbody>
</table>

Note: Refers to subscriptions providing at least 256 kbit/s download speed. In the case of wireless broadband, refers to active subscriptions (using wireless broadband networks to access the Internet). Regions refer to developing country members only (i.e., non-high-income economies). Source: World Bank analysis based on data from ITU and ictDATA.org.

A number of studies show that broadband can enable economic growth (See Chapter 1). Broadband is also an agent for economic, social and political development, as well as a platform for innovation, an enabler of small and medium enterprise (SME) growth and a facilitator of new firm foundation. This is particularly relevant for countries facing the challenge of development and looking to raise the standard of living of their citizens and foster social, human, and political progress. In that regard, it is useful to look at international objectives for promoting development and examine how broadband can be part of the strategy to achieving these goals.

Broadband has taken on increased relevance within the development community because of its potential to reduce poverty and better enable countries to participate in the global information society. International agreements on development and Information and Communication Technologies (ICTs) provide a context for the significance of broadband in developing countries.

This chapter looks at the Millennium Development Goals (MDGs) and World Summit on the Information Society (WSIS) targets as a global roadmap for developing country policymakers. It also reviews broadband bottlenecks and opportunities in developing nations, summarizes the broadband status of
developing regions and identifies regional and national policies for boosting broadband penetration, as well as identifies groups of countries that face specific income, geographic or other limiting conditions. The last section of the chapter provides summaries of broadband experiences in selected countries.

7.2 Broadband and Global Goals for Developing Countries

In September 2000, governments adopted the *Millennium Declaration*, committing their nations to reducing poverty monitored through measurable targets (Figure 7.2). The targets have a 2015 deadline and are known as the MDGs. Several reports have illustrated how ICTs can help to achieve the MDGs. Broadband is no different and its impact on the MDGs is arguably greater than any other ICT. For example, one of the barriers to achieving Goal 2 on universal primary education is the lack of primary school teachers. Broadband, in particular, can facilitate fast-track teacher training through distance education and e-learning. In addition, three of the MDGs are related to health; high-speed networks can have an impact through applications such as telemedicine. The importance of ICTs for achieving the MDGs is also highlighted by Goal 8, Developing a Global Partnership for Development and specifically Target 8.F: “In cooperation with the private sector, make available the benefits of new technologies, especially information and communications.” As an ICT itself, as well as a “pipe” capable of delivering ICTs, broadband may be considered an integral part of Target 8.F.

![Figure 7.2. The Eight Millennium Development Goals (MDGs)](image)

The WSIS, which was held in two phases, in 2003 in Geneva and in 2005 in Tunis, set an internationally agreed agenda for the adoption of ICTs worldwide, and illustrates the level of global political commitment to deploy broadband networks across different sectors. The *Declaration of Principles* identifies ICTs as an “essential foundation for the information society” noting that “[a] well-developed information and communication network infrastructure and applications, adapted to regional, national and local conditions, easily-accessible and affordable, and making greater use of broadband and other innovative technologies where possible, can accelerate the social and economic progress of countries,
and the well-being of all individuals, communities and peoples.” WSIS adopted ten targets addressing connectivity across different sectors (Figure 7.3.). The International Telecommunication Union (ITU) has reviewed progress towards the WSIS targets and emphasized that most should be considered as having a broadband component:

It is widely recognized that ICTs are increasingly important for economic and social development. Indeed, today the Internet is considered as a general-purpose technology and access to broadband is regarded as a basic infrastructure, in the same way as electricity or roads… Such developments need to be taken into consideration when reviewing the WSIS targets and their achievement, and appropriate adjustments to the targets need to be made, especially to include broadband Internet.615

\textbf{Figure 7.3. The 10 WSIS Targets}

- Connect villages with ICTs and establish community access points
- Connect universities, colleges, secondary schools and primary schools with ICTs
- Connect scientific and research centres with ICTs
- Connect public libraries, cultural centres, museums, post offices and archives with ICTs
- Connect health centres and hospitals with ICTs
- Connect all local and central government departments and establish websites and email addresses
- Adapt all primary and secondary school curricula to meet the challenges of the Information Society
- Ensure that all of the world’s population have access to television and radio services
- Encourage the development of content and to put in place technical conditions in order to facilitate the presence and use of all world languages on the Internet
- Ensure that more than half the world’s inhabitants have access to ICTs within their reach

\textit{Source: WSIS Geneva Plan of Action (http://www.itu.int/wsis/docs/geneva/official/poa.html).}

Taken together, the MDGs and WSIS targets provide a global roadmap for developing country policymakers. Broadband can help achieve the MDGs and thus place high-speed networks within the context of overall national development goals, while the WSIS targets can aid the monitoring of broadband deployment across different sectors. In other words, broadband is not an end unto itself but a means to an end (e.g., broadband can be a means to universal primary education).
7.3 Broadband Bottlenecks and Opportunities in Developing Regions

Improving access to broadband networks requires addressing supply and demand side bottlenecks. On the supply side, there are two broadband routes with different characteristics and market developments: wireline and wireless. The three main wireline broadband technologies in use are Digital Subscriber Line (DSL), cable modem, and fiber to the premises (FTTP) (Figure 7.4.). DSL is the predominant technology accounting for almost two-thirds of wireline broadband subscriptions in 2010. Broadband access over cable television (CATV) networks was used by one in five subscriptions around the world. FTTP accounted for just 16 percent of global wireline broadband in 2010 but its share has grown since 2005 while DSL and cable modem have dropped.

Figure 7.4. Distribution of Wireline Broadband Subscriptions, World, 2005 and 2010

Wireline broadband requires an underlying wired infrastructure. In the case of DSL, these are the copper lines used to connect subscribers to the telephone network. In the case of cable modem, the supporting transport media is the coaxial cable used to provide television access to subscribers (see Chapter 5). Fiber optic broadband uses flexible glass enclosed by cables running directly to the home or building. Significant investments are required in order to deploy any wireline infrastructure. For developed countries that have been building out telephone and CATV infrastructure for decades, investment costs in these technologies have often already been recouped. Taking advantage of networks with greater capacity, however, requires additional investments in fiber optic networks. Many developing countries lack extensive wireline infrastructure and investments in telephone, cable and fiber optic networks often require new up-front costs.

Given the above-mentioned constraints, the wireless broadband route appears more promising for many developing nations, and especially attractive for serving non-urban populations. Although the deployment costs of mobile broadband are less than wireline, they are still significant. Converting mobile networks to broadband readiness requires investment for spectrum and equipment by operators and the purchase of new devices by users. This results in high costs, at least initially, making mobile broadband more expensive for end users than current wireless services. Other wireless options include technologies such as fixed wireless and satellite. Like mobile broadband, investments in spectrum and equipment are needed for terrestrial fixed wireless technologies, and it may not be feasible to leverage
the existing mobile infrastructure in terms of towers and backbone networks. Satellite broadband is an option, particularly for remote locations, but is more costly than other solutions for mass deployment and has usage limitations for some applications.

Conditions vary across the developing world, and each country is endowed with differing levels of communication networks. Some, such as Costa Rica or Croatia, have a relatively well-developed wireline telephone network that could support broadband deployment, while others, such as China and Romania, have widespread cable TV networks that are able to provide a measure of facilities-based competition to telephone service operators. The challenge in such cases is to create incentives so that existing networks can be used to offer broadband services in competition with one another. In other countries, the challenge is to rollout broadband-capable networks from scratch. Take Lithuania for instance, which has focused on Greenfield deployment of fiber to the premises; by 2010 around a quarter of Lithuanian homes had fiber broadband access ranking the country sixth in the world.

Diversity in broadband infrastructure creates a higher degree of inter-modal competition. Therefore, countries should consider how they could leverage existing infrastructure to create greater competition in the broadband market. In 2009, the world was only using a little over one fifth of telephone lines for DSL, around a third of CATV connections for cable broadband, and just over ten percent of mobile subscriptions were broadband (Figure 7.5).

Figure 7.5. Broadband Connections Relative to Underlying Infrastructure

<table>
<thead>
<tr>
<th></th>
<th>North America</th>
<th>European Union</th>
<th>East Asia & Pacific</th>
<th>Europe & Central Asia</th>
<th>Latin America & Caribbean</th>
<th>Middle East & North Africa</th>
<th>South Asia</th>
<th>Sub-Saharan Africa</th>
<th>World</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSL/Total mainlines</td>
<td>22</td>
<td>13</td>
<td>13</td>
<td>22</td>
<td>18</td>
<td>22</td>
<td>11</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Cable modem/Total cable TV</td>
<td>69</td>
<td>34</td>
<td>12</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3G/Total wireless</td>
<td>29</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>14</td>
<td>7</td>
<td>0</td>
<td>4</td>
<td>11</td>
</tr>
</tbody>
</table>

Source: Data for DSL from TeleGeography’s GlobalComms database (2008), data for 3G from Wireless Intelligence (2008) and data for cable broadband from ictDATA.org (2009).

Broadband is also dependent on demand-side constraints such as accessibility to and affordability of broadband services, as well as awareness of its benefits. Services, applications, and content are key drivers: they need to be interesting, in the local language, and locally relevant. If these demand side issues are not tackled, a country risks creating a mismatch between supply and demand and will not be able to fulfill its broadband potential. As shown in Chapter 1 and Chapter 1, a country’s level of income impacts the ability to pay for broadband services while education levels affect awareness. These factors
form part of a country’s human development. Figure 7.6 illustrates the significant relationship between broadband take-up and the UNDP Human Development Index.

Figure 7.6. Broadband and Human Development

![Graph showing the relationship between broadband penetration and Human Development Index]

R² = 0.7834

Although developing nations face supply and demand side bottlenecks in their broadband markets, they represent some of the fastest growing markets and offer great potential as ICT uptake and broadband deployments grow. According to Point-Topic, a broadband market analyst company, the countries ranked as the top ten fastest growing broadband markets are all emerging economies and all saw over 20 percent growth in the number of broadband subscriptions in 2010 (see Figure 7.7).
7.4 Regional Developments

This section highlights broadband status in different developing regions around the world, including East Asia and the Pacific; Europe and Central Asia; Latin America and the Caribbean; Middle East and North Africa; South Asia; and Sub-Saharan Africa.

7.4.1 East Asia and the Pacific

The region is home to world broadband leaders such as the Korea (Rep.), Hong Kong (SAR) and Japan where super high-speed access is increasingly becoming the norm and competitive markets have been stimulated through disruptive new entrants (Box 7.1). However, a wide broadband divide distinguishes “the mostly high-income countries that are broadband leaders from the mostly middle- and low-income countries that are broadband challenged.”

A number of developing countries in the region have deployed telephone and CATV network infrastructure, but often they are not adequately upgraded for wireline broadband access. For example, the region’s developed economies have been successful in developing broadband access through CATV network infrastructure. This is not the case in the region’s developing nations. Despite large CATV markets in some countries such as China, the Philippines, and Thailand, broadband competition from CATV providers is generally low. One reason is that networks have not been upgraded to support broadband access via cable modem. In China, for example, despite having the world’s largest CATV market with almost 175 million subscribers in 2009, it has relatively few cable modem subscriptions and only about a quarter of its subscriptions are digital. This is likely to change with China’s new “Triple Network Project” announced in 2010. The project aims to enhance convergence among telecommunications, Internet, and broadcast networks by reducing barriers so that each market segment can provide any broadband service.
Most East Asian nations have licensed mobile broadband spectrum, and in a number of the region’s developing nations, mobile broadband subscriptions exceed wireline. In Indonesia, Telkom had 3.8 million mobile broadband subscriptions using data cards compared to 1.6 million wireline broadband subscriptions in December 2010. Mobile broadband coverage, however, still needs to be extended throughout the region from mainly urban to rural areas.

Malaysia’s 2006 *Information, Communications, and Multimedia Services* 886 strategy set a number of goals for broadband services, including an increase of broadband penetration to 25 percent of households by the end of 2006 and 75 percent by the end of 2010. Despite growth, the ambitious target for 2010 has not yet been met and the government is now focusing on fixed wireless, 3G mobile, and fiber-to-the-home platforms to boost broadband adoption. To that end, it is funding a fiber optic network that will connect about 2.2 million urban households by 2012. The network will be rolled out by Telekom Malaysia under a public-private partnership (PPP). The government will invest MYR 2.4 billion (USD 700 million) in the project over ten years, with Telekom Malaysia covering the remaining costs. The total cost of the project is estimated to be MYR 11.3 billion (USD 3.3 billion).

Connecting the Pacific region with broadband is a major challenge due to unique geographic challenges. It is critical for Pacific economies to gain access to adequate bandwidth essential for supporting broadband development. Many of the island nations in the region are widely dispersed, and backbone networks are limited. Most countries rely on high-cost, limited capacity satellites, and only a few economies have access to fiber optic submarine cables. The sub-region has also been slow to develop mobile broadband, a consequence of previously limited competition in mobile markets. However, a number of countries now have competitive mobile markets that should spur deployment of high-speed wireless networks.

Vietnam has made impressive strides in boosting international high-speed connectivity and broadband use. The case of Vietnam is highlighted in a case study (see section 7.6.7).

Box 7.1. The Third Man: Encouraging Disruption in Broadband Markets

Growth in some of the more successful developed economy broadband markets has been triggered by the entry of brand new disruptive operators. These new service providers tend to be the third player entering the market, shaking up duopolies of DSL and cable broadband operators or a dominant incumbent and a major wireless operator. This is the case in the developed East Asian economies of Korea (Rep.), Japan, and Hong Kong (SAR), where new operators entered the broadband market with innovative business plans and models, unsettling the market and triggering a beneficial stimulus to broadband growth.

- Hanaro entered the market in 1999 as a facilities-based telephone operator in competition with the incumbent Korea Telecom. Soon after entry, Hanaro began offering broadband DSL services resulting in intensive competition, a major factor in Korea (Rep.)’s rise as a top ranked broadband country. Hanaro had captured a fifth of the broadband market by 2010.

- SOFTBANK entered the Japanese broadband market in 2001 by leasing unbundled local loop lines from the incumbent telephone operators and in 2004, it obtained a facilities license and began deploying its own infrastructure. It acquired Japan’s third largest mobile operator in 2006 allowing SOFTBANK to enter the mobile broadband market. Marketing its service as Yahoo!BB, SOFTBANK had an 11 percent share of the broadband market in 2010 and over a third of its subscribers were getting speeds of 50 Megabits per second (Mbit/s). According to the company: “It is not an exaggeration to say that the wireline broadband service in Japan was created by the SOFTBANK Group.”
• Hong Kong Broadband Network (HKBN) entered the market in 2000 after it was awarded a fixed wireless license. The city’s compact high-rise building environment shaped HKBN’s technological strategy of installing in-building wiring; communications between buildings and HKBN’s routers and switches were carried out using wireless transmission through rooftop antennas. HKBN was able to penetrate the market quickly and shook up the quasi-duopoly between the incumbent wireline operator and CATV company for broadband provision. HKBN later acquired a wireline license and once again is shaking up the market by deploying fiber optic to the home. It had a 25 percent share of the wireline broadband market by 2010.

The process of disruption has also occurred in some European markets where alternative operators initially entered using the infrastructure of incumbent operators and then having established a foothold, began investing in their own infrastructure. This is the case in France and Italy:

• Free started as a dial-up operator in France in 1999 and began providing broadband services in 2002 using ADSL over France Telecom’s Unbundled Local Loop (ULL). In 2006, it began rolling out its own FTTH network and intends to cover four million homes by 2012, representing an investment of about EUR 1 billion. Free has been providing triple play services since December 2003. Its Internet Protocol Television (IPTV) service offers over 300 channels and Free’s broadband speeds range between 22 Mbit/s and 28 Mbit/s. In 2009, it was awarded the country’s fourth 3G license. Free had 22 percent of the French wireline broadband market in 2010.

• In Italy, FASTWEB started by deploying a fiber optic network in Milan. In 2001, it began providing triple-play services using DSL over Telecom Italia’s infrastructure. The company has partnered with other operators in a “Fiber for Italy” project where they will pool resources to provide FTTH in Italy’s 15 largest cities, an investment expected to cost EUR 2.5 billion. Meanwhile, FASTWEB has also been building its own FTTH network that passes nearly two million homes, offering speeds of up to 100 Mbit/s. FASTWEB had 13 percent of the wireline broadband market in 2010.

Market disruptive operators are spreading to emerging and developing economies:

• Starnet entered the Moldovan market in 2003 providing ADSL over the incumbent’s telephone network. In 2006, Starnet began providing VOB and also started the construction of its fiber optic network. In 2009, IPTV was added to its portfolio and by the end of 2010 Starnet had captured one quarter of the wireline broadband market.

• In Morocco, Wana was awarded wireless broadband spectrum in 2006. A company owned by national investors, it launched services in 2007 using high-speed Evolution Data Optimized (EV-DO) technology. This resulted in intense competition with the existing mobile operators and led to rapid adoption of 3G services that soon passed wireline broadband subscriptions. By the end of 2010, there were 1.4 million 3G subscribers in Morocco, almost three times the number of wireline broadband connections. Wana had 41 percent of the mobile broadband market.

The lesson for developing countries is that while it is critical to open broadband markets to competition, it is just as important to introduce brand new operators. Setting aside spectrum for a new operator and lowering other market entry barriers, particularly those relating to the ability to provide convergent services, can encourage this.
Chapter 7. Global Footprints: Stories from and for the Developing World

7.4.2 Europe and Central Asia

The region is well-positioned to promote broadband adoption with populations enjoying relatively high levels of education and significant existing wireline and cable television network build-out. However, the region is highly diverse in terms of geography, integration, and income, making it difficult to reach a common vision for broadband strategy. It ranges from countries with large seacoasts to landlocked nations and from the Baltics to the Balkans and Eastern Europe to Central Asia; from members of the Commonwealth of Independent States to the European Union; and from low-income to high-income economies.

A number of countries in the region adopted broadband strategies within the framework of national ICT plans. Most of the plans were launched in the early to mid-2000s and coincided with significant increases in broadband penetration. For example, in 2005 Moldova adopted its information society strategy, which incorporated a number of tracking indicators to monitor the impact of policies and programs for improving broadband access. Broadband penetration in Moldovan households rose from less than one percent in 2003 to 17 percent by 2009. International bandwidth availability rose significantly in the landlocked country following an optical fiber connection to Romania (Box 7.2).

Box 7.2. Impact of Improved Access to International Connectivity: The Case of Moldova

Until April 2010, Moldova’s international connectivity market was entirely controlled by state-owned incumbent Moldtelecom. Due to this and because it is a landlocked country, Moldova’s private firms did not have direct access to the Internet. At that time, the Government reformed policy and procedures to open the market to competition. By July 2010, three companies, mobile telephony provider Orange and Internet service providers (ISPs) Starnet and Norma, successfully applied to construct and operate cross border fiber optic cables and gain direct access to carriers via Romania.

The benefit of liberalization on availability, prices, and quality was immediate. International Internet bandwidth available in Moldova went from 13 Gbit/s in December 2009 to over 50 Gbit/s in July 2010. In response, Moldtelecom dropped the prices for wholesale connectivity by a third over that same time, with some of this drop coming in anticipation of the liberalization in late 2009. Retail subscribers in some parts of the country have already seen their available bandwidth double while subscription rates have remained the same.

As a country looking to establish its position as an ICT hub in Eurasia, this move marks the first step towards connecting Moldova’s fledging IT based services to global markets. Improved connectivity will allow SMEs to connect with new markets at lower prices and enhance their competitiveness. However the country needs to inject greater competition by removing all entry barriers.

Some of the countries in the region rank among the top countries in the world in broadband deployment and average download speeds. However, many landlocked countries in Central Asia face the challenge of ensuring that regional broadband backbones keep up with the region’s growing ICT needs. Within that context, the Economic and Social Commission for Asia and the Pacific (ESCAP)
undertook a feasibility study in four countries: Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan.624 Results of the study were issued in the report *Broadband for Central Asia and the Road Ahead*, which included the findings that these countries have low Internet access speeds coupled with high costs to consumers for broadband services, which has affected adoption. As such, ESCAP recommended that expansion of a regional broadband network is “a fundamental element” to satisfying broadband demand in these countries.

Turkey’s government recognizes the importance of a vibrant telecommunications market and is keen to promote the spread of broadband. For instance, many educational institutions now have broadband access. The Information Society Strategy for 2006–2010 aimed to develop regulation for effective competition and to expand broadband access. Targets included extending broadband coverage to 95 percent of the population by 2010 and reducing tariffs to two percent of per capita income. The regulator has also looked at issuing licenses for the operation of broadband fixed wireless access (BFWA) networks in the 2.4 GHz and 3.5 GHz bands. The case of Turkey is highlighted in a case study (see section 7.6.6).

7.4.3 Latin America and the Caribbean

The Latin America and the Caribbean (LAC) region has a relatively high number of wireline telephone lines and CATV subscribers compared to other developing regions. Cable broadband has been particularly successful, with over half of the subscribers enjoying a broadband subscription. In contrast, the number of telephone lines being used for broadband (via DSL) is relatively low.

Mobile broadband development initially lagged compared to other regions. One factor related to delays in the award of new spectrum bands used specifically for 3G services. However, this was mitigated somewhat by policies throughout the region that allow operators to use their existing 850/900 MHz spectrum, originally allocated for voice, for high-speed mobile data services. Compared to the typical frequencies awarded in many countries for mobile broadband, these frequencies support wider coverage with fewer base stations so that investment costs are lower.625

On the demand side, LAC fares favorably compared to other developing regions. Education levels are relatively high and the existence of common languages throughout many countries—Spanish in Latin America and English in much of the Caribbean—results in access to considerable content, spurring demand. Despite relatively high per capita income for a developing region, incomes are highly skewed, and affordability remains an issue. For example, over half of Mexican households reported that they did not have Internet access in 2009 because they could not afford it.626

In November 2010, ministers at the Third Ministerial Conference on the Information Society of Latin America and the Caribbean adopted *eLAC2015*, a regional roadmap for the information society highlighting six goals for universal broadband access in the region (Table 7.1). eLAC2015 considers broadband pivotal noting:

> For the countries of Latin America and the Caribbean, the universalization of broadband access in the twenty-first century is as important for growth and equality as were electric power and road infrastructures in the twentieth century. Broadband is an essential service for the economic and social development of the countries of the region, and it is indispensable for progress, equality and democracy. That is why the strategic goal is for broadband Internet access to be available to all of the citizens of Latin America and the Caribbean.627

| Table 7.1. eLAC2015 Universal Broadband Access Goals |
|-----------------|---|
| **Goal 1:** | Increase direct investment in broadband connectivity to make it available in all public establishments. |
Chapter 7. Global Footprints: Stories from and for the Developing World

Goal 2:	Advance towards universal availability of affordably priced broadband connectivity in homes, enterprises and public access centers to ensure that, by 2015, at least 50 percent of the Latin American and Caribbean population have access to multiple convergent interactive and interoperable services.
Goal 3:	Coordinate efforts to bring down the costs of international links by means of a larger and more efficient regional and subregional broadband infrastructure, the inclusion of (at least) the necessary ducts for fiber-optic cables in regional infrastructure projects; the creation of Internet exchange points (IXPs); the promotion of innovation and local content production; and the attraction of contents suppliers and distributors.
Goal 4:	Collaborate and coordinate with all regional stakeholders including academia and business, the technical community and organizations working in the field, such as the Latin American and Caribbean Internet Addresses Registry (LACNIC) and the Internet Society (ISOC), to ensure that Internet Protocol version 6 (IPv6) is broadly deployed in the region by 2015; and implement, as soon as possible, national plans to make government public services portals in Latin America and the Caribbean accessible over IPv6 and to make public sector networks native IPv6 capable.
Goal 5:	Harmonize indicators which provide an overview of the situation of broadband in the region, in terms of both penetration and uses of applications, in accordance with international standards.
Goal 6:	Promote ICT access and use by persons with disabilities, with emphasis on the development of applications that take into account standards and criteria on inclusion and accessibility. In this connection, promote compliance by all government web portals with the web accessibility standards established by the World Wide Web Consortium (W3C).

Source: eLAC2015.

Chile was the first Latin American country to announce a national broadband strategy. The strategy identified ICT as a priority for economic development. Chile has also planned and implemented ICT policies from both the supply and demand sides. The demand-side strategy has included programs for e-literacy, e-government and ICT diffusion. For example, almost all taxes are filed electronically, and government e-procurement more than doubled the volume of transactions processed between 2005 and 2008. The government has also promoted broadband use by municipalities. By 2008, almost all municipalities had Internet access, and 80 percent had websites. In order to reach the objectives of a digital Chile, the government’s broadband goal is to double broadband connections and complete nationwide coverage by 2012.

Brazil is one of the few countries in the region with a specific broadband plan while St. Kitts and Nevis has the highest broadband penetration in the region. The cases of these countries are highlighted in summaries below (see sections 7.6.1 and 7.6.4).

7.4.4 Middle East and North Africa

The Middle East and North Africa (MENA) region is relatively well-equipped with wireline telephony for a developing region and most wireline broadband is primarily via ADSL. Nonetheless, prospects for wireline broadband are constrained. Few alternative wireline operators have deployed copper line infrastructure and local loop unbundling (LLU), for the most part, is not available across the region. Further, the development of intermodal competition through CATV is inhibited by the popularity of...
Chapter 7. Global Footprints: Stories from and for the Developing World

satellite television, widely available at no charge through the informal market. Most new entrants to the traditional telephony market have been wireless based.

A report analyzing the main factors affecting broadband demand in many of the countries in the region identified challenges hindering broadband deployment and suggested recommendations to overcome them. Challenges included high retail prices, poor regional and international connectivity, limited wireline access infrastructure, lack of and restrictions on content, high cost of personal computers and limited competition. The report’s overarching conclusion was the need for convergence—through bundled offers and transition to IP-based networks—which would trigger mass broadband adoption.

Many, but not all, of the countries have awarded spectrum for mobile broadband services. Morocco, for example, was one of the first countries to award 3G frequencies in the region. It did so through a beauty contest, which lowered spectrum costs for operators. Some of the spectrum was awarded to a new operator, shaking up the existing duopoly and triggering intense competition in the mobile broadband market (Box 7.1). As a result, mobile broadband subscriptions in Morocco have surpassed wireline connections. The country has adopted the Maroc Numérique 2013 strategy with targets providing broadband to all schools and one third of households by 2013. Morocco is highlighted in a case study (see Section 7.6.3).

Most countries in the region share a common language facilitating collaboration on developing digital Arab content to improve demand for broadband. The Jordanian Minister of Information and Communications Technology has outlined the importance of the content industry as a main driver of Internet penetration, especially as it relates to local and Arabic content. The digital content industry in Jordan received a boost in 2009, when chipmaker Intel announced it planned to invest in two digital content companies: Jeeran and ShooFeeTV. The funding will be used to help both companies pursue regional growth as well as extend their product offerings. Jeeran is the largest user-generated content site in the Arab world, reaching one million members and seven million unique visitors per month. ShooFeeTV provides online information for more than 120 Arab satellite channel including listings, programming information, celebrity news, pictures and video clips. Global social networking sites such as Facebook and Twitter have also grown in popularity as reflected in their extensive use during the so-called Arab Spring in 2011. The number of Facebook users in the Arab region grew 78 percent in 2010 while in Tunisia the proportion of Facebook users increased eight percent in the first two weeks of January 2011 following the beginning of demonstrations.

7.4.5 South Asia

South Asia faces severe supply and demand side constraints in promoting broadband access. In absolute terms, there is a significant base of wireline telephone lines and cable television subscribers. India has the third largest wireline telephone network (measured by subscriptions) in the developing world and Pakistan the fourteenth largest. In terms of CATV subscriptions, India ranks second and Pakistan third among developing nations. Nevertheless, wireline infrastructure is relatively limited compared to other regions and the number of telephone lines and CATV connections for broadband services is relatively low. Some countries have been late to award mobile broadband spectrum that would trigger intermodal broadband competition. On the demand side, the region is the second poorest developing region after Sub-Saharan Africa and levels of education are relatively low.

India was the first country in the region to adopt a broadband policy in 2004. However, it has not achieved the goals set. The country published a consultative document on a new broadband policy, and in December 2010, the Telecommunications Regulatory Authority of India (TRAI) issued broadband
A key strategy is to develop an open access national fiber optic backbone network connecting all localities with more than 500 inhabitants by 2013.

Pakistan published a broadband policy in 2004. But broadband deployment has not lived up to expectations—the number of broadband subscribers in 2007 was only half of the level targeted for that year and well short of the half million target for 2010. In an effort to accelerate broadband take-up, a Universal Service Fund (USF) is being used to subsidize the deployment of broadband throughout the country.

Other South Asian nations have also adopted or are developing broadband plans. However, programs that would address demand-side affordability issues are limited (Table 7.2).

Table 7.2. Broadband Plans and Policies in Selected South Asian Nations

<table>
<thead>
<tr>
<th>Country</th>
<th>National broadband plan?</th>
<th>Universal service includes broadband?</th>
<th>Are there other financing mechanisms for broadband?</th>
<th>Are there social tariffs for broadband subscribers?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghanistan</td>
<td>Under development</td>
<td>No</td>
<td>TDF Fund</td>
<td>No</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>Yes</td>
<td>No, but foreseen in the National Broadband Policy</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Bhutan</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Maldives</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes for education</td>
</tr>
<tr>
<td>Nepal</td>
<td>Under development</td>
<td>Yes in rural areas. USO imposed on the incumbent wireline operator, and financed through USF Fund and interconnection charges</td>
<td>Tax exemption for telecom equipment imported for rural services</td>
<td>No</td>
</tr>
</tbody>
</table>

Sri Lanka, which was one of the first countries in South Asia to award 3G spectrum has the second highest penetration, the lowest tariffs and fastest mobile broadband speeds in the region. Sri Lanka’s broadband experience is highlighted in a case study (see Section 7.6.5).

7.4.6 Sub-Saharan Africa

The Sub-Saharan Africa region faces tremendous barriers in broadening access to broadband. It starts from a very low base, with limited wireline telephone networks and practically no CATV networks on the supply side, coupled with demand side bottlenecks including the lowest per capita income and fewest years of schooling of all developing regions.
Over the past decade, a large amount of private investment, driven by sector liberalization and competition and major advances in cellular technology, has brought mobile services within the reach of the majority of Africa’s population. The region’s focus, thus far, on mobile networks to address an immediate service need has heightened the need for development of backbone networks capable of supporting broadband. This has created a major bottleneck in the rollout of high-bandwidth services and in the upgrading of cellular networks to provide value-added services. Overcoming this infrastructure hurdle is an important element in shaping the structure and policy framework of the telecommunications services sector. Without it, broadband will remain expensive and limited to businesses and high-income customers. Backbone constrains will also limit access speeds, affecting quality.

The backbone deficit has been acutely felt in international bandwidth. Due to limited local content, most Internet traffic is directed at countries outside Sub-Saharan Africa. Unfortunately, a lack of international high-speed fiber optic capacity has meant that even where countries have been able to deploy local access broadband infrastructure, performance is affected by slow international connectivity. Where connectivity exists, cable theft continues to be a major problem for reliability. In addition, there are relatively few national Internet Exchange Points in the region; forcing even intra-region traffic to be hauled outside the region for switching and then sent back.

Until 2009, South Atlantic 3/South Africa Far East (SAT3/SAFE) was the only major regional submarine optic cable serving the continent and it was limited to a few countries on the west coast. Other countries had to use more costly and slower satellite links. This has changed dramatically since the arrival of several new undersea cable systems (i.e., The East African Marine System (TEAMS), Southern and East African Cable System (SEACOM), EASSy) including the first system to the region’s east coast (i.e., TEAMS). Total capacity rose by a factor of 8.5 in 2009 and additional planned cables are expected to increase undersea capacity to over 20 Tbit/s by 2012.

International connectivity is just part of the supply chain. Sub-Saharan African countries also need to ensure that bandwidth gets disbursed throughout the country and, in the case of the region’s landlocked countries national backbones must be in place to connect to neighboring countries. PPPs may be helpful to generate the necessary investment and to ensure an effective and open access operating arrangement. The Kenyan government, for example, has supported open access to backbone infrastructure in various ways. It encouraged operators to participate in the TEAMS undersea cable and has also pursued public private partnerships for national backbone construction. It is now contemplating the same for the construction of broadband wireless networks using Long Term Evolution (LTE) technology. See the Kenya case study in section 7.6.2.

At the local access level, mobile broadband holds great promise. However, outside of a few countries, the region has yet to exploit this on a significant scale. Around two dozen Sub-Saharan African countries had commercially deployed 3G networks at the end of 2010 with around nine million subscriptions.

Few African countries have elaborated a specific broadband policy. If mentioned at all, broadband is touched upon in overall sector strategies. One exception is South Africa where the Broadband Policy for South Africa was published in July 2010. Defining broadband as speeds of at least 256 kbit/s, the government has identified two targets for 2019: all inhabitants to be within two kilometers of a public broadband access point and a household broadband penetration of 15 percent.
7.5 Countries in Special Circumstances

In addition to regional groups, countries are also classified by particular economic, geographic, and political situations. This section identifies several groupings relevant to the international development community and how the specific characteristics of that group can affect broadband development.

7.5.1 Least Developed Countries (LDCs)

The UN created the Least Developed Countries (LDCs) category in 1971 to recognize the existence of a group of countries with severe poverty and weak economic, institutional, and human resources. This group consists of 49 countries with a combined population of 815 million in 2008. Fifteen of the LDCs are located in Africa, 12 in Asia, two in Latin America and two in Central and Eastern Europe. Around half are either small islands states or landlocked.

LDCs face tremendous supply and demand side challenges in deploying broadband networks. The existing level of wireline infrastructure is low, as are demand side indicators such as incomes and educational levels. The capacity for developing effective broadband strategies and policies is also limited due to institutional weaknesses and insufficient human resources in ministries and regulators.

New technologies such as broadband can help LDCs overcome development challenges and move LDC economies away from their dependence on primary commodities and low-skill manufacturing. There has been some urgency to deploy broadband networks in order to mitigate LDCs falling further behind technologically and becoming even more marginalized in the world economy. The development of international and national backbones is a main priority that will likely require innovative PPPs. Wireless broadband holds great promise given the significant increase in mobile networks in the LDCs and the lower costs of deploying wireless broadband compared to wireline infrastructures. LDCs will need to introduce greater competition and allocate spectrum for wireless broadband services in order to further encourage the deployment of these technologies.

7.5.2 Landlocked Developing Countries (LLDCs)

Landlocked developing countries (LLDCs), predominantly located in Sub-Saharan Africa and Asia, “face severe challenges to growth and development due to a wide range of factors, including: a poor physical infrastructure, weak institutional and productive capacities, small domestic markets, remoteness from world markets, and a high vulnerability to external shocks.” There are 31 LLDCs with a total population of 370 million in 2008.

Given their status as LLDCs, the main obstacle for these countries is distance from key ports causing high transaction costs and reducing international competitiveness. These geographical conditions pose a supply side challenge for LLDCs in terms of global connectivity through high-speed fiber networks.

“Virtual coastlines” can be created for LLDCs through the connection of national backbones to countries directly linked to undersea cables. This connectivity can then be brought to “virtual landing stations” in the LLDC where all ISPs gain cost-based access to international bandwidth. Rwanda has created a virtual landing station where optic fiber cables from undersea landing stations in Kenya and Tanzania (Rwanda’s “virtual coastline”) are terminated.

Access to high-speed international bandwidth will require regional cooperation and PPPs to spur investment in national backbones and ensure their onward connectivity to neighboring countries with undersea fiber optic cable. According to an ESCAP study on Central Asia, countries must cooperate to expedite and ensure effective regional connectivity. Broadband backbone infrastructure that
transcends borders requires interconnection. Along with management and maintenance, this affects all the countries benefiting from the network.

7.5.3 Small Island Developing States (SIDS)

The United Nations has recognized the particular problems of Small Island Developing States (SIDS) since 1994. According to the United Nations Conference on Trade and Development (UNCTAD), SIDS face “...a greater risk of marginalization from the global economy than many other developing countries...” due to their small size, remoteness and vulnerability to external shocks. They are also susceptible to natural disasters such as tsunamis and damaging environmental changes such as sea level rise. There are 38 UN Members classified as SIDS with a population of 55 million in 2008. Over one quarter of SIDS are also LDCs.

Broadband connectivity can help overcome these challenges in several ways, such as economic diversification through establishment of IT-enabled industries, creating a virtual closeness to the rest of the world and real-time weather modeling and monitoring. Additionally, tourism has a big economic impact in many SIDS and broadband plays a vital role for various travel applications such as reservation systems and marketing.

The SIDS are geographically diverse with different broadband supply and demand challenges. On the demand side, many SIDS have relatively small populations, which may deter investment. However, the small geographic areas of SIDS often makes it easier and cheaper to quickly deploy networks with a high degree of coverage and a growing number of SIDS are achieving universal mobile service. On the supply side, most of the Caribbean SIDS are located in a condensed area, crisscrossed by a number of undersea fiber optic cable networks. Pacific SIDS tend to be more spread out. Since there are far fewer options for access to undersea fiber optic cables, most Pacific SIDS are dependent on more expensive satellite solutions. Some Pacific SIDS, such as Fiji, are served by undersea cables and therefore are in a position of being a potential fiber hub to neighbors.

Most of the Caribbean SIDS introduced competition in telecommunications networks a number of years ago whereas the Pacific countries have done so only more recently. Mobile broadband has yet to have a significant impact in most SIDS to date due to a lack of spectrum allocation and uncertain demand.

The Eastern Caribbean Telecommunications Authority (ECTEL) was established as a regional regulator for countries in that sub-region. ECTEL overcomes human resource limitations of each country staffing their own full-fledged regulatory institution and harmonizes sub-regional policies. ECTEL recently moved to make high-speed Internet more accessible by designating the 700 MHz band for broadband wireless services. Saint Kitts and Nevis, a Caribbean SIDS, is profiled in a broadband country case study (see section 7.6.4).

7.5.4 Post-Conflict Countries

Post-conflict countries refer to nations where war and civil strife has led to the destruction of institutions and economic facilities. There is no official definition of a post-conflict economy, but they are often locations where civil conflicts have necessitated the intervention of peacekeeping missions. ICTs can play a beneficial role in helping to reconstruct these countries by attracting foreign investment, generating employment, enhancing education prospects and creating linkages to the global economy. Given the often poor or destroyed telecommunication infrastructure, post-conflict countries can leapfrog to state-of-the-art next generation networks. However, this will require a liberalized telecommunication regime that encourages convergence and investment in Internet Protocol networks.
In Afghanistan, for example, years of civil strife destroyed much of the economy, shutting down most government institutions including schools. A NATO-sponsored project has installed broadband access in universities using satellite technology. This has overcome shortages of learning materials and teachers since professors and students can download teaching information and use online learning tools. In East Timor, the Australian government has been assisting with the development of the new country’s media sector by providing journalists with the ability to upload and research news through the establishment of broadband centers.

One notable development in some post-conflict countries is the stunning result of private sector investment in ICTs. Private investors have been willing to take risks in highly unstable environments such as Afghanistan and Iraq. Starting from a very low base, these countries now have growing levels of mobile access and are now expanding into wireless broadband solutions. The case of Sri Lanka, a country emerging from a decades-long civil conflict, is highlighted in a broadband study (see section 7.6.5).

7.6 Broadband Experiences in Selected Countries

This section summarizes the results of various countries’ broadband experiences, as commissioned for the Broadband Strategies toolkit (www.broadband.toolkit.org). The countries studied cover a range of regions and development status, as shown in Figure 7. Additionally, examples of efforts to address supply-side and demand-side issues in each of the studied countries are outlined in Table 7.3.

Figure 7.8. Broadband Country Summaries

Note: All figures from 2010. Wireless broadband penetration refers to subscriptions and not active Internet use.
Chapter 7. Global Footprints: Stories from and for the Developing World

7.6.1 Brazil

Brazil is the world’s sixth most populous nation, so it is perhaps not surprising that it is among the top countries ranked by total number of broadband subscriptions. At the end of 2010 Brazil was in 9th position, with 15 million fixed broadband subscribers, as well as 20 million mobile broadband subscribers. Despite the size of the Brazilian broadband network, penetration is relatively low given its large population. Two key constraints include a shortage of fixed broadband infrastructure and wide income disparities in the county. There is a relatively low level of wireline infrastructure for fixed broadband services. Competition in the fixed telephone line sector is low and penetration has been falling due to mobile substitution. Fixed broadband is also available through cable modem, but growth has been limited due to lack of scale and growing preference for satellite-delivered multichannel television. With the relatively high penetration of mobile networks—subscription penetration exceeded 100 percent by December 2010—3G services are expanding rapidly to fill the demand for broadband. As a result, wireless access is likely to be the main growth area for broadband in Brazil now that constraints in availability of radio spectrum have been addressed and the 450 MHz band has been released for rural communications.

The other major constraint is the big variation in income levels across the country. Broadband access is uneven—at one end of the spectrum there is a high level of access in industrialized urban areas, mostly in the south east of the country. Here, the nation has recorded some of the world’s highest levels of Internet use, and in particular, Brazilians have been early users of social networking services. At the other end of the spectrum, there are the vast hinterlands of unconnected rural areas, most particularly in the less wealthy north and west part of the country. This pattern of uneven access also repeats itself at the local level. Most cities have wealthy areas with high levels of household broadband access, while close by in the favelas (“informal townships”), there is almost no fixed broadband and people must depend on cybercafés or relatively slow and expensive 3G connections.

The federal government has had little success in addressing the digital divide using the universal service fund, although state and municipal level initiatives have improved public access. The private sector has invested heavily in telecommunications, but Brazil’s vast size and low population density in the rural areas makes it difficult to achieve pervasive nationwide broadband.

In a renewed effort to help address the continued disparities in broadband access, the government began a major new infrastructure development initiative in mid-2010 setting ambitious targets to triple broadband uptake by 2014. Called the National Broadband Program, it aims to provide broadband access for low-income households, and in areas where private operators have little commercial interest. The USD 6.1 billion project aims to cover 4,000 cities and towns—40 million homes—with broadband at a speed equal to or greater than 512 kbit/s for about USD 20 per month. The initial focus has been on addressing the deficiencies in the national backbone and ensuring sufficient fiber infrastructure is in place. The old state-owned operator, Telebras, has been revitalized as manager to integrate existing resources including utilizing the fiber networks of oil and electricity utilities.

With the national broadband plan and steadily rising economic prosperity for the less wealthy, as well as infrastructure projects associated with the soccer World Cup in 2014 and the Olympics in 2016, there are improved prospects for wider adoption of broadband in Brazil.
7.6.2 Kenya

Kenya has a natural geographic advantage being strategically located on the east coast of Africa and well-positioned vis-à-vis the Arab Gulf States. Its government-led “build it and they will come” approach to broadband development has leveraged the country’s geographic location and played a major role in dramatically increasing fiber optic backbone capacity. Many of Kenya’s milestones have been realized in less than five years. Connections were made to three fiber optic submarine cables by the end of 2010 changing the face of the broadband market. The country has gone from relying on satellite for international capacity at the beginning of 2009, to having access to almost four terabits of capacity over fiber towards the end of 2010.

Although the landing of the cables is merely a first step, it has already resulted in an 80 percent decrease in wholesale bandwidth costs (although reliability is sometimes a problem). Lower prices and greater availability are expected to increase access to the Internet, as well as to promote the continued spread of sophisticated mobile applications and services, and consequently improve opportunities for the creation of and access to information and knowledge. Affordable broadband is expected to increase Kenya’s competitiveness, particularly in the Business Process Outsourcing industry, and to encourage entrepreneurship and innovation.

Kenya is also emerging as something of a mobile broadband hub. This builds on its success with the M-PESA mobile money platform. Mobile broadband launched in 2008 and far outnumbers wireline subscriptions. LTE is being trialed, and construction of a wholesale backbone network is also being considered. A regional mobile application laboratory is being established in Nairobi with the assistance of the World Bank, with the aim of fostering the development of mobile applications and locally relevant content.

With an estimated wireline and mobile broadband penetration rate of two subscriptions per 100 people in 2010, Kenya still has significant progress to make with respect to broadband uptake. Stimulating demand and usage by citizens and the public and private sector remains a challenge. Kenya, largely through the government, has taken an innovative and pro-active approach to putting the user at the center and addressing the other elements of the broadband ecosystem, such as education, literacy, applications, and content. This has been done through progressive regulation, the promotion of policies relating to ICT in education, the subsidization of relevant content and application projects, and facilitating creative public private partnerships.

Much of Kenya’s success comes from four important factors: (1) a clear national approach of how broadband fits into its Vision 2030 development goals; (2) strong leadership and direction; (3) a credible regulatory, policy and institutional framework; and (4) leveraging the strength of the public and private sectors through Public/Private Partnerships. Elements of these traits permeate all aspects of the broadband ecosystem. Although there have been a few setbacks in terms of the pace of implementation and overlaps in the policy and institutional framework, the Kenyan broadband experience is inspiring particularly its potential to transform economic and social activity.

7.6.3 Morocco

Morocco is a lower-middle-income economy in the northwest of Africa. Its 2009 economic growth rate of 4.2 percent surpassed the MENA average of 2.3 percent yet the country remains vulnerable to economic shocks, high illiteracy, and unemployment rates, as well as increasing pressure on natural resources. Despite these challenges, the country continues to demonstrate gradual progress in human development and economic indicators through investment in diversification and sound macro-economic policies.
For example, Morocco invests more on ICT than any other MENA country: in 2008, 12.5 percent of its GDP was spent on ICTs compared to the regional average of 5.8 percent. As a result, the telecommunications market has advanced rapidly with the spread of mobile phones emerging as a bright spot of the country’s ICT sector. Penetration rose 20 percentage points in 2010 to reach over one mobile subscription per person.

Morocco was one of the first countries in the MENA region to award 3G frequencies, which took place in 2006. Unlike most other countries that awarded 3G frequencies through an auction, Morocco chose a beauty contest, resulting in lower costs for operators. Some of the spectrum was awarded to a new operator, shaking up the existing duopoly and triggering intense competition in the mobile broadband market. As a result, mobile broadband, which launched in 2007, surpassed fixed broadband connections by 2009 and made up almost three quarters of all broadband connections in 2010.

Exchanging videos and music, social networking and Internet telephony are main uses driving people to broadband, with a combined increase of 25 percentage points in 2010. Considering that the majority of Internet access is over mobile broadband, growing usage is beginning to impose constraints on networks impacting quality. Further, only about one-quarter of households in Morocco have a broadband connection. Consequently, a significant number of Internet surfers use cybercafés where pay-as-you-go pricing is cheaper than a home subscription.

Broadband availability in large enterprises is widespread and most companies have a website. However, the use of online transactions is limited with only around one-fifth of the population buying or selling goods and services over the Internet. Broadband use among micro, small and medium enterprises with fewer than 10 employees is much more limited.

The country has adopted the Maroc Numérique 2013 (“Digital Morocco”) strategy to enhance e-government services and overcome current limitations. Targets include creating employment opportunities within the sector and providing broadband to all schools and one third of households by 2013. In addition, some 400 Community Access Centers are to be created. The development of local content is a key strategy including increasing the availability of e-government to some 90 online applications. In an effort to get more small enterprises to adopt broadband, free training will be provided including sensitizing businesses about the benefits of high-speed Internet for increasing productivity and competitiveness.

7.6.4 Saint Kitts and Nevis

The island nation’s approach to developing broadband is encouraging. At the end of 2010, wireline broadband subscription rates stood at almost 30 percent, the highest rate among all countries in the LAC region. This achievement in broadband can be attributed in part to the small physical size of St. Kitts and Nevis that has enabled faster rollout of the physical infrastructure, facilitated marketing and promoted maximum impact for government-led information and communication technology policy initiatives. Among the Caribbean islands, however, “smallness” is certainly not unique and a number of other factors have contributed to this achievement.

The phrase “strength in depth” is borrowed from the world of soccer, the most popular sport on the island. The term is used to underscore the point that the strength of the island’s achievement in the broadband sector lies in its commitment to nurturing the foundational components of the broadband ecosystem. Promotion of basic education and digital literacy, building technology awareness, facilitating access to basic technologies, and encouragement of a competitive telecommunications environment are but a few examples of where the country has developed its core strengths.

Key strategies of the St. Kitts and Nevis broadband ecosystem include:
• Competitive environment through efficient legislation and regulation;
• Regional coordination, particularly for design of policy frameworks;
• Government as facilitator through strong leadership in the ICT sector;
• Government as leader by promoting service demand through content provision;
• Universal service for broadening access to technologies; and
• Public private partnerships to catalyze and strengthen broadband initiatives.

The deployment of a second submarine fiber network in 2006 has introduced competition in international backbone capacity that should further serve to enhance the broadband sector. However, as in any ecosystem, sustainability and growth can be threatened by internal weaknesses. Some of these weaknesses have served as lessons learned and were adjusted at the national level; others continue to pose a challenge to the islands. Costly services, an unstable power supply, quality of service issues, lack of high-speed mobile networks, and deficiencies in the availability of local content and applications that create network value for citizens, are some of the challenges for future growth of the broadband sector in St. Kitts and Nevis.

In general, the country has been successful in promoting uptake of broadband Internet through a number of measured approaches, which may be of relevance to discussions on broadband strategies pertaining to other small island developing states.

7.6.5 Sri Lanka

Sri Lanka, an island nation located in the Indian Ocean just south of India, has lately experienced rapid growth in the availability and use of mobile broadband services. A key factor is mobile broadband spectrum availability. 3G frequencies were made available as far back as 2003 for testing and in 2005 commercial 3G services were launched. Early access to spectrum enabled operators to gain experience and constantly innovate to stay competitive. As a result, Sri Lanka has the fastest mobile broadband technologies in South Asia.

The government’s e-development agenda has also triggered broadband uptake. E-Sri Lanka is a cross-sector ICT development program financed in part by the World Bank. A series of comprehensive supply and demand side projects has helped create awareness about broadband in the country. For example, one project set up a network of nearly 500 rural telecenters while there have been other plans for a least-cost subsidy scheme to build and operate a fiber backbone in rural areas, as well as establish a comprehensive e-government program. Additionally, operators have been motivated to invest in network infrastructure in light of projected demand.

Beginning in the early 1980s, Sri Lanka was plagued by a violent ethnic conflict. One of the negative results was that it forced a large portion of the minority Tamil population to leave Sri Lanka and seek refuge in other countries. This large migrant population generated high demand for Internet services in order to communicate with relatives remaining in Sri Lanka. Demand for Internet telephony was unusually high in conflict zones with Internet cafes catering to the demand.

Innovative business models have contributed to widening access to services. The development of wireless broadband rides on the wave of extremely high mobile voice growth. Intense competition forced operators to innovate in such a way as to be able to profitably serve even the poorest consumers. Network costs were reduced drastically by sharing passive and active infrastructure and outsourcing key parts of the operation. Distribution costs were minimized through e-reloads, eliminating the need to print and distribute top-up cards for pre-paid users. Small top-up values attracted consumers with low
and variable incomes to the market. This “budget telecom model” enabled operators to make positive margins even though average revenue per user was low. This same model is now being applied to mobile broadband in Sri Lanka. By enabling pre-paid, very low value re-charge and promotional discounts for students, the youth segment is being brought into the mobile broadband market. These early adopters are in turn spreading interest about the benefits of high-speed wireless networks.

The downside of the budget telecom model is that price is sometimes sacrificed for quality. Compared with the developed world, Sri Lankan consumers get less broadband value for the money they spend. Part of the reason is that advertised broadband speeds are theoretically possible, but rarely delivered in reality. Another bottleneck is international connectivity. A significant portion of Internet traffic is routed outside of the country and wholesale international connectivity prices are relatively high, making Internet capacity a sought after resource.

7.6.6 Turkey

Turkey has throughout history been prominent as a center of commerce because of its land connections to the continents of Europe, Asia, and Africa, and the sea surrounding it on three sides. An Organization for Economic Cooperation (OECD) member, it has long awaited European Union (EU) membership. As an upper-middle-income economy, Turkey suffers from comparison with these mainly high-income groupings. Its fixed broadband penetration stood at 9.4 subscriptions per 100 inhabitants in June 2010 compared to the OECD average of 24.2 and 34 percent of Turkish homes had a broadband connection compared to the EU average of 61 percent in 2010.

These statistics disguise the fact that compared to other countries in its income group, Turkey is doing relatively well. It has a higher broadband penetration than recent EU members and the fourth largest fixed broadband network among upper middle-income economies.

E-government initiatives have been a major driving force for development of the broadband ecosystem. This has triggered demand by enterprises in the ICT sector and motivated citizens to increase Internet usage. Ensuring a shared vision among political leaders and technocrats has also been an important factor in pushing e-government programs. Political leaders saw e-government as a central instrument that would support public reforms and larger changes in the political system. A central organizational structure was formulated to develop strategies and put public money into the pipeline for a set of strategically important projects with high value and high transaction.

The high-tempo growth of Turkish economy in the last decade is another supportive factor. Various market-oriented reforms have been complemented with a proactive foreign policy resulting in large sums of overseas capital flowing into the country. Communications, software and hardware segments of ICT industries have expanded rapidly. This has included significant investment in upgrading mobile networks to broadband. Broadband mobile networks were only launched in 2009, yet by the end of 2010 around a quarter of the population was already capable of accessing high-speed wireless services.

The Turkish population has largely embraced social networking. The country is the fourth largest Facebook market in the world. In addition, local content is growing and Turkish websites are getting more popular and increasingly diversified.

Nevertheless the country continues to face economic and social barriers to effectively absorb broadband technologies on a large scale and better utilize them for leveraging competitiveness. Fixed broadband competition is limited and dominated by DSL technology. ICT skill gaps among SMEs and the less educated need to be adequately addressed with participation of private initiatives. The lack of a suitable national accounting framework for more detailed analysis hinders international benchmarking in ICTs and innovation.
If Turkey can overcome these barriers, the results could be considerable. According to its Digital Vision roadmap, broadband could boost economic growth by 0.8 to 1.7 percentage points per year. This economic momentum enabled by an enhanced broadband ecosystem would create between 180,000 and 380,000 new jobs each year.

7.6.7 Vietnam

With some 86 million inhabitants, Vietnam is the 13th most populated country in the world. Its land area is larger than Italy and almost the size of Germany. Wireline broadband has grown over 1,000 percent since 2005 and with 3.6 million subscriptions in 2010, it had the ninth largest network among developing counties. Its wireline broadband penetration is the sixth highest among lower middle-income economies with 4.4 subscriptions per 100 people.

Solid economic growth has coincided with increased broadband usage. This has been accompanied by opening of the economy, attracting investment from foreign capital. Liberalization of the telecommunications sector has led to growing competition with 11 enterprises providing infrastructure. Service providers have developed modern IP-based networks with extensive fiber optic backbones. Incomes have risen so that more people can afford broadband. This in turn has created a virtuous circle with explosive demand creating a larger market, resulting in economies of scale and lower prices. Another factor driving fixed broadband growth is that Vietnam was a latecomer to mobile broadband. Major mobile operators did not launch their networks until 2009 with around 15 percent of mobile subscribers having 3G capability towards the end of 2010.

Despite these successes, Vietnam faces challenges broadening broadband access, particularly in rural areas where some 70 percent of the population resides. Young people in urban areas “live” with high-speed Internet access; however, less than one percent of rural households had any type of Internet access in 2008.

Most businesses are focused on using the Internet for basic needs such as email and finding information while more advanced applications such as e-commerce are not used as widely. Despite rising Internet access in households, many users have yet to fully exploit broadband applications. Survey data indicate that the use of a computer’s Internet connection in Vietnam is to search for personal information and serve children’s learning. The lack of relevant content and fragmented information are problems; a public information network with a unified portal, equipped with an automatic translation engine and rich multimedia content covering health, education, culture and agriculture is lacking.

The cost of fiber optic access is only economical in new urban areas and for large enterprises so DSL remains the fixed broadband choice of households. But copper lines provide less quality than fiber and it is difficult to upgrade the transmission capacity. At the same time, telecom enterprises have been lately focusing on developing mobile broadband subscribers to the detriment of the fixed network.

The large number of operators has led to overlap in investment in the access network. Interconnection is difficult because operators use a variety of technologies, impacting standardization of the national telecommunications infrastructure. Intense competition has resulted in price wars threatening long-term sustainability. Service providers are looking to reduce duplication by cooperating on shared infrastructure but so far no specific measures have been implemented.

While Vietnam has made tremendous achievements in broadband, there are challenges arising from its rapid growth: (i) development of the width (e.g., the number of subscribers) needs to be coupled with development of depth (e.g., service quality); (ii) differences in the level of broadband between regions can contribute to widening gaps; and (iii) the rapid development of broadband can cause policy problems affecting social life, security, and politics.
Table 7.3. Country Case Examples of Policies and Programs for Broadband Development

<table>
<thead>
<tr>
<th>Component</th>
<th>East Asia & the Pacific (Vietnam)</th>
<th>Europe & Central Asia (Turkey)</th>
<th>Latin America & the Caribbean (St. Kitts)</th>
<th>Middle East & North Africa (Morocco)</th>
<th>South Asia (Sri Lanka)</th>
<th>Sub-Saharan Africa (Kenya)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPLY</td>
<td>A number of fixed and mobile broadband operators have been licensed</td>
<td>Requires incumbent to provide wholesale broadband access to its fixed telephone network</td>
<td>Licensed cable TV & fixed wireless operators to provide broadband services in competition with incumbent</td>
<td>Granted license to new operator Wana who is now the 2nd largest broadband operator</td>
<td>Sri Lanka was among the first in the region to award mobile broadband spectrum and has lowest prices and highest speeds</td>
<td>Kenyan government encouraged local operators to participate in undersea TEAMS cable through PPP</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Installation of a broadband network connecting over 1,000 educational institutions in Ho Chi Minh City</td>
<td>Broadcast firms allowed to provide broadband and incumbent allowed to provide IPTV</td>
<td>VoIP services such as Vonage, MagicJack, and Skype extensively used by residential consumers</td>
<td>The Genie program is installing broadband multimedia computer labs in all schools impacting six million students</td>
<td>The regulator compiles broadband quality of service showing difference between advertised and actual speeds</td>
<td>VoIP legal since 2006 with liberal licensing for ISPs</td>
</tr>
<tr>
<td>Services</td>
<td>Several plans and programs for promoting software and digital content industries</td>
<td>Share of government services provided online to total public services reached to 66 percent in 2010</td>
<td>Government encourages local portals developed by entrepreneurs; SKNvibes gets two million hits a month</td>
<td>The Idarati (e-government) program led to 97% of administrative units having a website with some 200 services online</td>
<td>The e-Sri Lanka program has resulted in 112 online services and some 4 million people conducting transactions with government online</td>
<td>Judiciary Telepresence project connects judges and courts</td>
</tr>
<tr>
<td>Applications</td>
<td>Support procurement of digital information devices for households with financial difficulties through USF & spectrum auction proceeds</td>
<td>1,850 Public Internet Access Points (PIAP) to provide ICT access and ICT competency to citizens, have been provided by the government</td>
<td>Students in the final grade of high school provided with laptops. Operators bid on providing Internet access to these students on a pay-as-you-go basis</td>
<td>Subsidizes laptops for engineering students and teachers</td>
<td>The Easy Seva project used PPPs to install over 50 public Internet facilities in rural areas connected with mobile broadband</td>
<td>The Kenya ICT Board establishes and funds Pasha Digital Villages with broadband access for communities</td>
</tr>
</tbody>
</table>

Source: Adapted from World Bank Broadband Country Case Studies (2011).
Appendix A: Weblinks to National Broadband Plans

<table>
<thead>
<tr>
<th>Country</th>
<th>Title of the Plan</th>
<th>Weblink</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colombia</td>
<td>Plan Vive Digital Colombia (Colombia Digital Living Plan)</td>
<td>http://www.mintic.gov.co/vivedigital/pdfs/material.pdf</td>
</tr>
<tr>
<td>Japan</td>
<td>e-Japan strategy in 2001 (updated at intervals)</td>
<td>http://www.kantei.go.jp/foreign/policy/it/index_e.html</td>
</tr>
</tbody>
</table>
Appendix B: Policies and Programs for Promoting Broadband in Developing Countries

<table>
<thead>
<tr>
<th>Policy / Program</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promote investment and market entry</td>
<td>The first step of broadband policy implementation is to foster competition with minimal market entry barriers. Lowering or removing entry barriers into broadband markets drives competition. A key consideration is technological neutrality. The rapid development and diffusion of broadband is largely due to competition between technologies such as DSL, cable modem, fiber optics, and wireless. To enjoy the full benefits of such competition, governments should not influence the technological choices of providers without good reason.</td>
<td>The Thai government considers that international connectivity could be a bottleneck and for that reason issues automatic licenses for international gateway services.</td>
</tr>
<tr>
<td>International coordination</td>
<td>Coordination among countries can impact all levels of the broadband supply chain by lowering costs through common technical standards and facilitating the development of international, regional and national backbones. There already exists a high-level of global and regional cooperation in areas such as equipment standards and frequency coordination. Regional harmonization in broadband regulatory approaches can help to reduce uncertainty and attract investment.</td>
<td>The Eastern Caribbean Telecommunications Authority (ECTEL) is a regulatory body for its five member states. It coordinates policy in a number of areas including aspects related to broadband such as frequencies for broadband wireless access, wholesale access to networks and quality of service.</td>
</tr>
<tr>
<td>Reduce administrative burdens and provide incentives for R&D, pilots, and network rollout</td>
<td>High license fees, taxes and burdensome administrative processes can discourage investment in the broadband sector, especially when the market is nascent and the returns uncertain. Measures such as providing investors with tax benefits and low-interest, long-term loans can promote investment in network development. Likewise allowing operators to use broadband spectrum for pilots prior to formal allocation provides an opportunity to test feasibility of different frequencies and gain valuable experience.</td>
<td>In order to encourage broadband connectivity India removed licensing requirements for use of Wi-Fi and WIMAX in the 2.4 GHz-2.4835 GHz band.</td>
</tr>
<tr>
<td>Allocate and assign spectrum</td>
<td>Allocating the appropriate spectrum can significantly alter the business case for wireless broadband.</td>
<td></td>
</tr>
</tbody>
</table>
Governments should manage their radio spectrum appropriately to reduce entry barriers, promote competition, and enable the introduction of innovative technologies. Given the rapid development of wireless broadband technologies, governments should allow providers to obtain new frequencies by expanding available frequency bands. They should implement management policies that encourage efficient use and shift spectrum from low-value uses to broadband. Spectrum managers should also keep in mind the effect of their spectrum allocations on business economics: higher bands make mobile communication more difficult and more expensive. Spectrum should be assigned on a technology- and service-neutral basis. This approach is critical to enabling all the different types of applications of broadband services: voice, video, and data can all be provided by wireless broadband technologies. Finally operators should be allowed to use their existing spectrum for mobile broadband services.

Example: Widespread policies throughout Latin America allow operators to use their existing 850/900 MHz spectrum, originally allocated for voice, to be used for high-speed mobile data services. These frequencies also support wider coverage with fewer base stations so that investment costs are lower and a larger number of people can gain access.

<table>
<thead>
<tr>
<th>Policy / Program:</th>
<th>Infrastructure sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply & Demand impacts:</td>
<td>Supply: International Connectivity, Domestic Backbone, Local Access; Demand: Access, Affordability</td>
</tr>
<tr>
<td>Description:</td>
<td>Civil works (for example, trenches, ducts, and cables) are the biggest sunk cost in broadband network construction in both the access and the backbone segments. The costs of backbone network construction can be cut by establishing legal grounds for open access to the passive infrastructure (conduits, ducts, and poles) of other services (roads, railways, and power supply facilities). Similarly, when contractors construct other types of new infrastructure, the government can require them to build passive infrastructure that communications service providers can access on a nondiscriminatory basis. Another option is to require the installation of basic infrastructure, such as ducts, when homes and offices are constructed or renovated. Finally, governments can permit or facilitate joint construction of backbone and subscriber networks among providers.</td>
</tr>
<tr>
<td>Example:</td>
<td>In Thailand, operators signed a Memorandum of Understanding on infrastructure and network sharing in November 2010 in support of the country’s National Broadband Policy. According to the government, the MoU will lead to more efficient use of networks.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Policy / Program:</th>
<th>Internet exchange</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply & Demand impacts:</td>
<td>Supply: International Connectivity; Demand: Affordability</td>
</tr>
<tr>
<td>Description:</td>
<td>There are many advantages to local routing of Internet traffic via a common exchange point including substantial cost-savings by eliminating the need to put all traffic through more expensive long-distance links to the rest of the world. In addition, local links are faster because of the reduced latency in traffic, which makes fewer hops to get to its destination.</td>
</tr>
<tr>
<td>Example:</td>
<td>The Rwanda Internet Exchange (RINEX) has been operational since mid-2004. In October 2003, SIDA (the</td>
</tr>
</tbody>
</table>
Swedish International Development Agency) began an initiative to assist Rwanda in establishing a national IXP. For SIDA, Rwanda fulfilled the prerequisites needed for assistance, including the presence of a neutral body to host the peering point, the existence of at least two independent ISPs in the country, and a team of technicians from the various Internet providers trained in the techniques of setting up and maintaining a peering point. Each network operator provides a circuit from its backbone and a router which connects to the IXP switch.

<table>
<thead>
<tr>
<th>Policy / Program:</th>
<th>Public/private partnerships (PPPs) for deployment of open access broadband networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply & Demand impacts:</td>
<td>Supply: International Connectivity / Domestic Backbone</td>
</tr>
<tr>
<td>Description:</td>
<td>Network construction is the highest entry barrier in the communications industry, requiring significant financial resources. Construction of domestic and international backbone networks is essential to ensure that high-quality, low-cost connectivity is available. Businesses might initially avoid investing in backbone networks because they are unsure of the returns on their investments. Governments can partner with the private sector to provide up-front support in order to reduce risks or act as an anchor tenant to induce investment.</td>
</tr>
<tr>
<td>Example:</td>
<td>The Kenyan government has been aggressively promoting the development of broadband backbones through public-private partnerships (PPPs). It took an active role in The East African Marine System (TEAMS), an undersea fiber optic cable linking Mombasa, Kenya and Fujairah in the United Arab Emirates (UAE). The government encouraged operators in Kenya to join it in taking an 85% stake in the cable, which was launched in 2009. More than ten operators have an ownership interest in TEAMS guaranteeing them access at wholesale rates. Kenya also encouraged PPPs for building the national fiber backbone and is considering the same for LTE networks.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Policy / Program:</th>
<th>Coordinate access to rights of way</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply & Demand impacts:</td>
<td>Supply: Domestic Backbone, Local Access; Demand: Affordability</td>
</tr>
<tr>
<td>Description:</td>
<td>Obtaining the rights of way necessary to deploy broadband infrastructure can be a complex process adding to costs and delaying deployment.</td>
</tr>
<tr>
<td>Example:</td>
<td>Canada’s Telecommunications Act includes provisions to facilitate operators’ access to public property.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Policy / Program:</th>
<th>Facilitate open access to critical infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply & Demand impacts:</td>
<td>Supply: International Connectivity, Domestic Backbone, Local Access; Demand: Affordability</td>
</tr>
<tr>
<td>Description:</td>
<td>Critical infrastructure is essential network elements or services that are typically owned by a single or small number of suppliers. These include facilities such as international and national fiber optic backbones and fixed local access networks that cannot easily be replicated. Facilitating open access to these facilities through options such as an obligation for providers to provide wholesale access offers or structural separation of wholesale and retail activities can stimulate competition and lower retail broadband prices.</td>
</tr>
<tr>
<td>Example:</td>
<td>The European Commission’s requires incumbent operators to offer unbundled access to their fixed telephone networks.</td>
</tr>
</tbody>
</table>
Connect schools to broadband networks

Supply & Demand impacts:
Supply: Domestic Backbone, Local Access; Demand: Access, Affordability, Awareness

Description:
School connectivity provides many benefits including access to an ever-growing volume of educational information, opportunities for collaboration and the use of on-line applications. It provides students and teachers hands-on experience for developing ICT skills. Schools can also be leveraged to provide connectivity in off-hours to the rest of the community.

Example:
In Chile, the Center for Education and Technology within the Ministry of Education administers *Enlaces*, the country’s initiative to improve education in subsidized state schools using ICTs.\(^ {\text{667}} \)
Enlaces provides access to the Internet to approximately 75 per cent of students in schools that are enrolled in the project, 67 per cent of which have a broadband connection.

Government as an anchor tenant

Supply & Demand impacts:
Supply: Domestic Backbone, Local Access; Demand: Access

Description:
One of the biggest expenses in providing broadband connectivity in rural areas is the “middle mile,” or the portion connecting a town to the Internet backbone. Once the backbone connection is established to government institutions, it can be leveraged to provide retail broadband services to local residences and businesses. Broadband connected government institutions thus become “anchor points” from which broadband connectivity can be shared with the surrounding community.

Example:
The United States has recommended that broadband connectivity in federal offices located around the country should be used to extend broadband access to unserved and underserved communities.\(^ {\text{668}} \)

Monitor service quality

Supply & Demand impacts:
Demand: Attraction

Description:
Broadband service providers often advertise broadband speeds that are higher than the bandwidths actually experienced by the user. Differences between advertised and actual speed can impact users’ confidence in the quality of broadband services. This can be overcome through regular reporting of service quality levels.

Example:
The Telecommunications Regulatory Authority of Bahrain publishes quarterly results of its broadband quality of service monitoring.\(^ {\text{669}} \) It carries out a predefined set of tests around the clock. The results are stored in a centralized database. Actual versus advertised speeds for different ISPs are tested based on access to local and international web sites. The measurements supplement information already available to consumers in respect to prices and advertised speeds.

Create an enabling environment for intermodal competition

Supply & Demand impacts:
Supply: Local Access; Demand: Attraction

Description:
Convergence allows for the provision of voice, data and broadcast services over telephone, broadcast, mobile and Internet networks. Governments should allow any type of network to offer any type of broadband service in order to intensify competition. This includes the legalization of voice over broadband and television over
Internet Protocol services.

Example: Chile allows telecom and television operators to provide voice, data and video services. Cable television operators account for almost half of broadband lines and around one fifth of voice subscriptions.\(^{670}\)

<table>
<thead>
<tr>
<th>Policy / Program:</th>
<th>Ensure nondiscriminatory access for service, application, and content providers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply & Demand impacts:</td>
<td>Demand: Attraction</td>
</tr>
<tr>
<td>Description:</td>
<td>It is critical to ensure that all broadband providers of services, applications and content have fair access to broadband networks. “Network neutrality” helps to achieve this by preventing broadband operators from blocking or degrading access to specific content except when requested by user.</td>
</tr>
<tr>
<td>Example:</td>
<td>Chile’s Internet and Network Neutrality Law prohibits operators from blocking applications or content unless requested by the user. Intensive users would be required to subscribe to a broadband plan that reflects the cost of their usage.(^{671})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Policy / Program:</th>
<th>Consider expanding universal service obligation to include broadband</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply & Demand impacts:</td>
<td>Supply: Local Access; Demand: Access, Affordability</td>
</tr>
<tr>
<td>Description:</td>
<td>In a number of countries, the type and quality of telecommunication services that must be made available to subscribers is defined in laws. The inclusion of broadband in such definitions would require operators to make broadband available on demand.</td>
</tr>
<tr>
<td>Example:</td>
<td>In July 2010, the Communications Market Act in Finland was revised to include a reasonably priced Internet connection in the definition of universal service. According to the Ministry of Transport and Communications: “Telecom operators defined as universal service providers must be able to provide every permanent residence and business office with access to a reasonably priced and high-quality connection with a downstream rate of at least 1 Mbit/s.”(^{672}) The connection can be either fixed or wireless.</td>
</tr>
</tbody>
</table>

APPLICATIONS & CONTENT

<table>
<thead>
<tr>
<th>Policy / Program:</th>
<th>Undertake government-led demand aggregation, with government agencies as early adopters and innovators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply & Demand impacts:</td>
<td>Supply: Domestic Backbone, Local Access; Demand: Access</td>
</tr>
<tr>
<td>Description:</td>
<td>In many countries there exists pockets of broadband demand that are too small to obtain adequate broadband service at favorable prices. By pooling that demand together, a larger market can be created providing incentives for broadband operators to supply the market.</td>
</tr>
<tr>
<td>Example:</td>
<td>In Italy an agency of the Ministry of Treasury has aggregated government demand for broadband leading to a sharp reduction in the prices paid.(^{673})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Policy / Program:</th>
<th>Provide e-government applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply & Demand impacts:</td>
<td>Demand: Attraction</td>
</tr>
<tr>
<td>Description:</td>
<td>Computerizing public information and providing e-government services through broadband networks are essential. E-government encourages citizens to subscribe to broadband services.</td>
</tr>
</tbody>
</table>
Example:
In Colombia, all municipalities have a website, the first Latin American country to accomplish this. The Colombian e-government portal is linked to some 3,000 websites, with information about around 3,000 administrative processes of which 541 could be accomplished completely online in December 2009. Citizen use of e-government services doubled in 2009 to over half a million visits per month.

Policy / Program: **Promote adoption by industry**
Supply & Demand impacts: Supply: International Connectivity, Local Access; Demand: Affordability, Awareness
Description: Support for broadband-related industries increases demand for supply side components enhancing infrastructure investment and helps to create long-term sustainable demand for broadband services. Providing training and incentives for Small and Medium Sized enterprises can help them get broadband connected to improve their productivity and widen their market opportunities.
Example: In Vietnam the government supports software parks through development of basic infrastructure and incubation and securing domestic and foreign investment for tenants.

Policy / Program: **Promote creation of digital content**
Supply & Demand impacts: Demand: Attraction
Description: Support for content creation relevant to local needs and in national languages can help attract people to use broadband.
Example: The Jordanian government has facilitated foreign investment in the digital creation industry. In 2009, chipmaker Intel announced an investment in two Jordanian digital content companies: Jeeran and ShooFeeTV. The funding will be used to help both companies pursue regional growth as well as extend their product offerings.

Policy / Program: **Support secure e-transactions**
Supply & Demand impacts: Demand: Security
Description: Online transactions are an important part of the broadband environment. Transactions must be secure and legal to encourage the development of two-way interactive e-commerce, e-government and telemedicine applications. This means that legal systems need to recognize electronic signatures and transactions. Information security such as encryption technologies and anti-hacking software, are also critical for a stable and safe broadband atmosphere.
Example: The Association of South East Asian Nations (ASEAN) published a reference framework for e-commerce back in 2001 and has since guided the creation and harmonization of e-commerce laws in the region. By April 2008, eight of its ten members had enacted e-commerce legislation enabling the legal recognition of online transactions to support applications such as online retailing and Internet banking. ASEAN is the first developing region in the world to implement a harmonized e-commerce legal framework throughout member countries.

Policy / Program: **Implement reasonable intellectual property protections**
Supply & Demand impacts: Demand: Security
Description:
One enabler of content and media development is the creation of an intellectual property rights (IPR) regime that protects creators’ interests while enabling others to use and improve those creations. Such rights need to balance the interests of creators with the larger goals of enabling knowledge sharing, fair use, and adaptation. This is particularly relevant for the development of e-learning and distance education applications.

Example:
Creative Commons licenses allow creators to specify which rights they wish to reserve, thereby allowing a range of possibilities between full copyright and the public domain.\(^{678}\)

Policy / Program:
Provide low-cost user devices in education

Supply & Demand impacts:
Supply: Access Device; Demand: Affordability, Awareness

Description:
The spread low-cost computers in schools typically include an ecosystem for operating and maintaining the devices, which often involves providing broadband access in schools in order to download software and support the Wi-Fi capability of the devices. The provision of low-cost educational computers also develops ICT skills at an early age helping to grow demand for broadband.

Example:
Uruguay has supplied Wi-Fi enabled laptops to all primary school children.\(^{679}\) One of the goals of the Uruguayan plan was to boost overall household computer ownership by leveraging the students taking the laptops home after school. This has resulted in 220,000 new homes with computers including 110,000 in the lowest income families.

Policy / Program:
Develop digital literacy programs for citizens

Supply & Demand impacts:
Demand: Awareness

Description:
To raise public awareness of the benefits of broadband services and promote their use, governments should provide training on how to use computers and the Internet. This training can contribute to the rapid and widespread penetration of broadband. In the short run, such training generates demand. It can also be a step toward universal service when the program targets underserved groups. ICT training for children and students can change their learning behavior and interests and, by extension, alter their parents’ views of ICT and broadband.

Example:
In Colombia, the Compartel program within the Ministry of ICT devoted around COP 153 billion (USD 84 million) in 2009 for teaching free computer literacy courses at some 1,670 Internet centers around the country. The courses were provided to around 200,000 people where they learn about basic computer tools, Internet navigation, email, search engines, chat and ICT applications. In addition, teachers use virtual training and video conferencing at the centers to offer courses in other subjects. The centers are often located in educational institutions with access provided to the local community for training during non-school hours.\(^{680}\)

Policy / Program:
Address content and security concerns

Supply & Demand impacts:
Demand: Security

Description:
Many users are leery of broadband Internet access because of objectionable content and security concerns. This
Appendix B: Policies and Programs for Promoting Broadband in Developing Countries

<table>
<thead>
<tr>
<th>Policy / Program</th>
<th>Supply & Demand impacts</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concern</td>
<td></td>
<td>concern can be alleviated through programs that educate users about perceived risks, child online protection and how to use the Internet safely.</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td>The regulator in Qatar has created a site for children, teenagers, teachers and parents providing tips for safe online surfing.</td>
<td>681</td>
</tr>
<tr>
<td>Policy / Program</td>
<td>Expand access to underserved communities with USF support</td>
<td>Supply: National Backbone, Local Access; Demand: Access. Universal Service Funds (USF)—typically financed by contributions from telecom operators—were initially created to facilitate the development of telephone infrastructure in rural and other underserved localities. Given that broadband connectivity can provide many beneficial services in addition to voice telephony countries should consider the scope of USF to cover broadband deployment in underserved areas.</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td>Pakistan’s USF is funded by a 1.5 percent levy on telecom operator revenues. Broadband projects are eligible for funding and include the connection of schools through broadband computer labs and extending domestic fiber optic backbones to rural areas.</td>
<td>682</td>
</tr>
<tr>
<td>Policy / Program</td>
<td>Community access centers</td>
<td>Supply: Local Access; Demand: Affordability, Awareness, Attraction. Citizens in underserved communities do not use broadband because they have no access, cannot afford it or are not aware of its benefits. Creating facilities for public broadband use can alleviate these barriers by establishing a place of access, offering free or low cost tariffs and including training. This can include adapting existing public facilities such as libraries or using schools after-hours for community access.</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td>In Malaysia, the Government established Community Broadband Centers (CBC) to provide collective high-speed Internet to underserved areas identified under the Universal Service Provision (USP) program. The CBC is outfitted with computers connected to broadband. Training is also provided at each CBC.</td>
<td>683</td>
</tr>
<tr>
<td>Policy / Program</td>
<td>Facilitate affordability of broadband devices</td>
<td>Supply: Devices; Demand: Affordability. Computers, mobile phones and data cards for broadband use are expensive for many citizens of developing countries. Countries could consider developing policies and programs that make user devices more affordable for people who want to buy them but lack the means to do so. This includes reducing or eliminating taxes on broadband-enabled devices and subsidizing or offering low or zero interest loans for their purchase.</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td></td>
<td>In March 2009, China announced that it had selected 14 PC vendors to offer low-priced PCs in rural areas. All the PCs in the winning bid are priced from USD 290 to USD 510. This approach is part of the National Home Appliance Subsidy Program for rural areas. About 57 percent of the rural population—about 200 million households—will be eligible for a 13 percent subsidy if they purchase one of those PCs.</td>
<td>684</td>
</tr>
</tbody>
</table>
Endnotes

2 Brazil’s broadband plan defines broadband as “the provision of telecommunications infrastructure that enables information traffic in a continuous and uninterrupted manner, with sufficient capacity to provide access to data, voice and video applications that are common or socially relevant to users as determined by the federal government from time to time.” Ministério das Comunicações, Um Plano Nacional Para Banda Larga: O Brasil Em Alta Velocidade (Brazilian National Broadband Plan) at 24 (2009) (translated by Telecommunications Management Group, Inc.)

3 OECD, Broadband Growth and Policies in OECD Countries at 134 (2008).

5 Qiang and Rosso, IC4D: Extending Reach and Increasing Impact, Chapter 3: Economic Impacts of Broadband (2009), p. 45.

6 Qiang and Rosso, IC4D: Extending Reach and Increasing Impact, Chapter 3: Economic Impacts of Broadband (2009), p. 45.

18 Countries include Argentina, Brazil, Chile, Colombia, Ecuador, El Salvador, Mexico, Nicaragua, Panama, Peru, Uruguay, and Venezuela.

27 Erik Almqvist, *Social Net Benefits Of IPTV And BB Infrastructure Investments*, IPTV World Forum MEA, Dubai (Nov. 1, 2010), available at http://www.ericsson.com/campaign/televisionary/content/pdf/regulation/7f16d52b-d310-4b4f-8a48-1f3fb7b3c0b.pdf.

33 The State of the Internet, Akamai, 4Q 2010.

Endnotes

43 Harvard Business Review Analytic Services, *How the Cloud Looks from the Top: Achieving Competitive Advantage in the Age of Cloud Computing*, Report Commissioned by Microsoft (May 2011), available at http://www.microsoft.com/en-us/cloud/tools-resources/whitepaper.aspx?resourceId=Achieving_Competitive_Advantage&fbid=nSj309bhGW3. The respondents were large companies: the average annual sales for 2010 for respondent companies were USD 1.3 billion and average company size was 3,280 employees. However, the respondents were from a wide range of sectors: 17 percent were in the IT sector; 12 percent were in professional services; and financial, manufacturing and government/nonprofit each represented 10 percent of the respondents.

Endnotes

76 World Bank analysis based on TeleGeography GlobalComms data (Dec. 2009).

82 International Data Corporation, Worldwide Smartphone Market Grows 89.5% Year Over Year in Third Quarter As New Devices Launch, Says IDC (Nov. 4, 2010), available at http://www.idc.com/about/viewpressrelease.jsp?containerId=prUS22560610.

86 Adapted from Yongsoo Kim, Tim Kelly and Siddhartha Raja, Building Broadband: Strategies and Policies for the Developing World, GiCT Dept. World Bank (Jan. 2010),

88 Wesley Cohen and Daniel A. Levinthal, Absorptive Capacity: A New Perspective on Learning and Innovation, Administrative Science Quarterly (1990), pp. 128-152.

89 http://www.oecd.org/dataoecd/57/14/38393115.pdf

90 von Hippel, Eric (2005), Democratizing Innovation, MIT Press

91 In particular, the World Bank defined absorptive capacity in the context of innovation as the quality of its labor force and the business environment (including access to finance) in which firms operate and are able (or unable) to start up, expand, and reap the financial rewards of their new-to-market innovations. See World Bank, Global Economic Prospects 2008: Technology Diffusion in the Developing World, Washington, DC, 2008, available at http://econ.worldbank.org/WBSITE/EXTERNAL/EXTDEC/EXTDECPROSPECTS/GEPEXT/EXTGEP2008/0,menuPK:4503385~pagePK:64167702~piPK:64167676~theSitePK:4503324,00.html. Applied to broadband, this will focus on
broadband-enabled services and applications and would also expand to the use of and creation by businesses, citizens and the government of these services and applications to modify transform their behavior and processes to be more productive and efficient.

93 In a technical sense, public goods are non-rivalrous (i.e., one person’s use does not diminish another person’s ability to use it) and non-excludable (people cannot be stopped from using it). Examples include free over-the-air radio and television and national defense. However, some argue that broadband is not a pure public good as broadband access is excludable as demonstrated by the unevenness of broadband deployment, even within the same country. Some may also argue that broadband is not a public good since it is also rivalrous—one person’s use can diminish another’s use if the network is congested. Robert Atkinson, Network Policy and Economic, Paper Presented at the 2010 Telecommunications Policy Research Conference (TPRC) (Oct. 2010), available at www.itif.org/files/2010-network-policy.pdf.

96 Núcleo de Informação e Coordenação, Análise dos Resultados da TIC Domicílios, Gráfico 8, p. 14 (2009). The total percentage of respondents is more than 100 because some respondents provided more than one reason for non-adoption. FCC, Broadband Adoption and Use in America, p. 30 (November 2009). The total percentage of respondents is less than 100 because, for purposes of comparison, not all factors addressed in the study are included in this figure.

101 Oman in 2009 shortlisted firms competing to become the Sultanate’s first universal service provider.

102 Article 155 of Brazil’s Telecommunications Law, as well as various other regulatory instruments issued by Anatel, notably Order N. 172 of May 12, 2004, issued by the Superintendent of Public Services of Anatel, requires wireline providers to unbundle. However, due to the fact that wireline network unbundling prices are high, in practice, unbundling does not really occur in Brazil. Anatel has identified as a short-term priority the need to review its policies with regard to ULL, as well as to adopt a pricing model for the use of the network so that ULL can be mandated.

103 Under consideration as of 2011.
Endnotes

104 The list of weblinks to each of these national broadband plans is included in Appendix A: Weblinks to National Broadband Plans.

105 International Telecommunication Union (ITU), Birth of Broadband (Sept. 2003).

108 For small island developing states (SIDS), obtaining submarine cable connectivity has been a mixture of geography, history and luck. Investment in a submarine cable depends on traffic which is itself a function of the number of people and the intensity of use. SIDS have very small populations and modest levels of teledensity and Internet usage making it challenging to obtain submarine cable connectivity. See Ewan Sutherland, Telecommunications in Small Island Developing States, 37th Research Conference On Communication, Information And Internet Policy, George Mason University School of Law, p. 8 (Sept. 2009).

118 International development organizations, such as the World Bank and regional development banks, typically have an overall funding envelope for a particular country at a given time which involves tradeoffs among competing eligible initiatives.

121 European Commission, Communication from the Commission: Community Guidelines for the application of State aid rules in relation to rapid deployment of broadband network, (Sep. 30, 2009).
Endnotes

129 The consortium is headed by France Telecom-Orange, and includes: Baharicom Development Company; Benin Telecoms; Cable Consortium of Liberia; Orange Cameroun; Companhia Santomense de Telecomunicacoes; Cote d’Ivoire Telecom Expresso Telecom Group; Gambia Telecommunications Company; International Mauritania Telecom; Office Congolais des Postes et Telecommunication; Orange Guinea; Orange Mali; Orange Niger; PT Comunicacoes; the Republic of Equatorial Guinea; the Gabonese Republic; Sierra Leone Cable; Societe des Telecommunications de Guinee; and Sonatel.Alcatel Lucent, News Release on ACE Cable (June 2010), *available at* http://www.prnewswire.com/news-releases/20-operators-team-with-alcatel-lucent-to-bring-fast-lower-cost-broadband-connectivity-in-africa-with-a-new-17000-km-submarine-system-95852004.html

134 Id.

136 Id.

138 Irwin 2003, *op. cit.*

139 Some instruments can actually compound the obstacles. For example, granting tax holidays or custom duty exemptions weakens the business climate by discriminating among economic activities and increasing the cost of tax administration and compliance.
Although the deployment of national backbones are important goals of some broadband plans, the indicators to measure developments in these areas have not been identified or defined by the international statistical community and the data are not widely available. Nevertheless, perusal of plans from some countries can help to identify relevant indicators. For example India’s proposed broadband plan calls for the construction of a national fiber optic backbone throughout the country. This might be measured by indicators such as the number of localities served by the national fiber optic backbone and kilometers of fiber backbone in the network. See TeleGeography CommsUpdate, India’s national broadband policy to be sent for Cabinet approval shortly (Mar. 31, 2011), available at http://www.telegeography.com/products/commsupdate/articles/2011/03/31/indias-national-broadband-policy-to-be-sent-for-cabinet-approvalShortly/.

The Partnership aims to develop further different initiatives regarding the availability and measurement of ICT indicators at the regional and international levels. It provides an open framework for developing a coherent and structured approach to advancing the development of ICT indicators globally, and in particular in developing countries. Partners include EUROSTAT, ITU, OECD, UNCTAD, UNESCO Institute for Statistics, the UN Regional Commissions (UNECLAC, UNESCWA, UNESCAP, and UNECA), United Nations Department of Economic and Social Affairs (UNDESA), and the World Bank. See http://www.itu.int/ITU-D/ict/partnership/index.html.

For example, the FCC in the United States has a consumer broadband webpage where tests can be run to test speed, latency and jitter. See http://www.broadband.gov/qualitytest/about/.

ECLAC, ECLAC Launched Regional Broadband Observatory, Press Release (May 27, 2011).

164 Id.

Endnotes

179 Id. at p. 4.

182 On 3 March 2010 the Minister for Broadband, Communications and the Digital Economy announced that spectrum license re-issue will be considered for those existing 15 year spectrum licensees who are already using their spectrum licenses to provide services to significant numbers of Australian consumers, or who have in place networks capable of providing services to significant numbers of consumers. As part of an eventual decision, consideration will be given to the five public interest criteria which were supported by industry stemming from the 2009 consultation process. The criteria are: (i) promoting the highest value use for spectrum; (ii) investment and innovation; (iii) competition; (iv) consumer convenience; and (v) determining an appropriate rate of return to the community. See Parliament of the Commonwealth of Australia, House of Representatives, Radiocommunications Amendment Bill 2010, Explanatory Memorandum, available at http://www.comlaw.gov.au/Details/C2010B00129/Explanatory%20Memorandum/Text.

Endnotes

190 It should be noted that competitive concerns have been raised regarding municipally owned and operated wireless broadband networks, especially in cases where they may crowd out investment from private parties.

192 Id.

196 Michael Kende, Overview of recent changes in the IP interconnection ecosystem, Analysys Mason, p. 32 (Jan. 23, 2011).

197 Id.

201 The point that peering and transit arrangements are demand side substitutes has recently been made by the European Commission in a case involving the Polish regulatory authority’s proposal to regulate these services as separate relevant markets. See European Commission, Commission Decision of 3 March 2010 pursuant to Article 7(4) of Directive 2002/21/EC (Withdrawal of notified draft measures), regarding Case PL/2009/1019: The wholesale national market for IP traffic exchange (IP transit) and Case PL/2009/1020: The wholesale market for IP traffic exchange (IP peering) with the network of Telekomunikacja Polska S.A., at para. 36, available at http://circa.europa.eu/Public/irc/infs/ectf/library?=/poland/registered_notifications/pl20091019-1020/act_part1_v4pdf/_EN_1.0&_a=d.

206 See Id.

214 Id.

215 Traffic can also be routed using satellite connectivity, which may be the only alternative in many developing countries including landlocked countries and SIDS. However, satellite links have certain drawbacks such as limited capacity, are more expensive and have delays in transmission.

218 NCC, *Determination on Dominance in Selected Communications Markets in Nigeria* (Mar. 26, 2010).

222 CRC, Resolution No. 2065 (Feb. 27, 2009).

226 *Id.* at p. 8.

237 ARCEP has promulgated a series of regulations that cover fiber deployments in the country. Different rules apply to installations in rural as opposed to urban areas. In addition, the Law on Modernizing the Economy (August 2008) introduced the idea of fiber “mutualization;” whereby the fiber installer must make the fiber available to other companies. ARCEP also contemplated (but ultimately did not adopt) a requirement that multiple strands of fiber be installed initially, to accommodate multiple providers.

254 This third goal is addressed with more detail in section 3.10.1 below.

257 Id.

260 Id. at Article 2 (Illegal access), Article 3 (Illegal interception), Article 4 (Data interference), Article 5 (System interference), and Article 6 (Misuse of devices).

264 Id. at Article 7 (Computer-related forgery) and Article 8 (Computer-related fraud).
Id. at Article 9 (Offences related to child pornography).

Id. at Article 10 (Offences related to infringements of copyright and related rights).

Id. at p. 45.

Id.

Id. at p. 4.

Google to adopt a series of remedial measures spanning from image blurring (required by Canada, Germany, Switzerland), pre-announcing itineraries and marking its vehicles (required in Italy). In addition to photographs of streets, Google collected information to map WiFi networks and in doing so it collected (inadvertently as determined by some authorities to date) personal information, including entre emails and URLs, passwords. In light of this, Goggle has agreed to modify its privacy practice and delete personal data collected (in countries such as Austria, Canada, Denmark, and Ireland). Google also has been subject to monetary penalties for these breaches, including a EUR 100,000 fine imposed in France in March 2011. For a description of Google’s practice, see Office of the Privacy Commissioner of Canada, Preliminary letter of Finding, (Oct. 2010), available at http://www.priv.gc.ca/media/nr-c/2010/let_101019_e.cfm.

The data subject is the individual who is the subject of the personal data.

Cloud computing refers to Internet-based computing whereby software, shared resources and information are on remote servers ('in the cloud').

Behavioral advertising consists of an online publisher that allows third parties to collect data about consumers’ use of the website.

Web tracking consists of tracking users across different visits or across different websites.

These include systems and applications which record users' locations and movements in public places.

The central piece of legislation relating to data protection in the European Union is Directive 95/46/EC, on the protection of individuals with regard to the processing of personal data and on the free movement of such data. In addition, Directive 2002/58/EC, concerning the processing of personal data and the protection of privacy in the electronic communications sector (“e-Privacy Directive”), regulates areas which were not sufficiently covered by Directive 95/46/EC, such as confidentiality, billing and traffic data, rules on spam, etc. This Directive was subsequently amended by Directive 2009/136/EC of 25 November 2009 to, among other things, enhance privacy and data protection of Internet users.

A data controller is a person (natural or legal) who alone or jointly with others determines the purposes and means of the processing of personal data.

Communication from the Commission to the European Parliament, the Council, the Economic and Social Committee and the Committee of the Regions: a comprehensive approach on personal data protection in the European Union, European Commission, p. 9 (Nov. 2010).

Id. at p. 49.

Id. at p. 36.

Recital 26 of Directive 95/46/EC.

European Commission, Communication from the Commission to the European Parliament, the Council, the Economic and Social Committee and the Committee of the Regions: a comprehensive approach on personal data protection in the European Union, pp. 6-7 (Nov. 2010).

Id. at p. 11.

The Recommendation provided that OECD member countries should foster the establishment of an informal network of privacy enforcement authorities and should cooperate with each other to address cross-border issues arising from enforcement of privacy laws. See Organisation for Economic Co-operation and Development, OECD Recommendation on Cross-border Co-operation in the Enforcement of Laws Protecting Privacy, available at http://www.oecd.org/document/14/0,3343,en_2649_34255_38771516_1_1_1_1,00.html.
Current members include authorities from Australia, Bulgaria, Canada, Czech Republic, the European Union, France, Germany, Guernsey, Ireland, Israel, Italy, the Netherlands, New Zealand, Poland, Slovenia, Spain, Switzerland, the United Kingdom, and the United States. See https://www.privacyenforcement.net/.

The CPEA aims to: (i) facilitate information sharing among privacy enforcement authorities (PE Authorities) in APEC economies; (ii) provide mechanisms to promote effective cross-border cooperation between authorities in the enforcement of Privacy Law; and (iii) encourage information sharing and cooperation on privacy investigation and enforcement with PE Authorities outside APEC. See http://www.apec.org/en/Groups/Committee-on-Trade-and-Investment/Electronic-Commerce-Steering-Group/Cross-border-Privacy-Enforcement-Arrangement.aspx.

See Article 19 of the Universal Declaration of Human Rights and Article 19(3) of the International Covenant on Civil and Political Rights.

Any limitation to the right to freedom of expression must pass the following three-part, cumulative test: a) It must be provided by law, which is clear and accessible to everyone (principles of predictability and transparency); and (b) It must pursue one of the purposes set out in article 19, paragraph 3, of the International Covenant on Civil and Political Rights, namely (i) to protect the rights or reputations of others, or (ii) to protect national security or of public order, or of public health or morals (principle of legitimacy); and (c) It must be proven as necessary and the least restrictive means required to achieve the purported aim (principles of necessity and proportionality). See United Nations, Human Rights Council, Report of the Special Rapporteur on the promotion and protection of the right to freedom of opinion and expression, p. 8 (May 2011) available at http://www2.ohchr.org/english/bodies/hrcouncil/docs/17session/A.HRC.17.27_en.pdf.

Id. at p. 19.

The case of Ligue Contre le Racisme et L’Antisémitisme v. Yahoo! Inc., RG: 00/05308, T.G. (Paris, Nov. 20, 2000), was one of the first national court cases to attempt to restrict content. The case involved the display for sale of Nazi memorabilia via Yahoo.fr. It affected not only cross-border e-commerce, but also ISP liability for content of third parties available on the provider’s service as well as jurisdictional issues.

See, e.g., OpenNet Initiative’s research at http://opennet.net/research/regions/asia. ISP filtering is also a key component of the Australian Government’s cyber-safety plan; see http://www.dbcde.gov.au/funding_and_programs/cybersafety_plan/internet_service_provider_isp_filtering.

Directive 2000/31/EC.

Id. at Art. 85 Q.

An alternative interpretation is that only those innovations that ultimately pass the market test are sustainable and considered successful.

Endnotes

339 National IT and Telecom Agency, Ambitious new broadband goal for Denmark (June 2010).

342 Department of Communications, Energy and Natural Resources, National Broadband Scheme.

344 Universal Service Obligation Fund Supported Scheme for Wire Line Broadband Connectivity in Rural and Remote Areas.

351 E-Dominicana is a national strategy which has as its mission “to promote the use and appropriation of Information and Communications Technologies in the Dominican Republic by means of initiatives that create synergies between the governmental sector, the civil society, and the productive sector, to offer all its inhabitants better opportunities which will contribute to their development, by bringing them welfare and progress in the exercising of their capacities”. Its vision is “to place the country in a position that will allow it to compete in the new scenario of a globalized world, by achieving sustainable development in the economic, political, cultural, and social scope, and to assume the challenge of converting inequality and Social exclusion from the digital divide into a digital opportunity.”

Endnotes

364 *infoDev ICT Regulation Toolkit, Module 4, Section 2.4.4: Revising the licensing regime or issuing new licences*, available at http://www.ictregulationtoolkit.org/en/Section.3214.html.

365 Id.

366 Id.

371 Law n° 55-01, adopted in November 2004, made important modifications in the set up of universal service in Morocco. The universal service definition was extended to include the supply of value added services, including Internet. A new approach relating to operator’s contribution to the mission of universal service was also introduce, including regional development obligations and the introduction of the “pay or play” mechanism – see note on Telecommunications and ICT sector in Morocco, available at http://www.apebi.org.ma/IMG/pdf/E-Morocco.pdf

374 European Commission, Guidelines for the assessment of broadband projects under EU state aid rules (Sept. 2009).
European Commission, Guidelines for the assessment of broadband projects under EU state aid rules (Sep. 2009).

The discussion of subsidies draws, including verbatim without quotes, from Björn Wellenius, Vivien Foster and Christina Malmberg Calvo, Private Provision of Rural Infrastructure Services: Competing for Subsidies, World Bank Policy Research Working Paper No. 3365 (2004). The examples are taken from the individual references noted.

Subsidies can be designed to reduce access barriers to which target groups (e.g. low-income families) are especially sensitive, such as initial connection, equipment, or installation charges. This is common in electricity and water supply.

About two to three percent of community income is often used for initial discussion of rural telecommunications programs. Surveys of rural communities in countries as different as Argentina, India, Nicaragua, and the Philippines show that households spend about five percent of monetary income in energy, fairly consistently across countries and with even higher proportions for the lower income households. The World Health Organization’s target is that water supply should not cost more than five percent of household income. See references in Wellenius et al. 2004.

See ICT Regulation Toolkit section 6.1.2. In high income countries the proportion is smaller, although the amount is higher in absolute terms. In Finland in 2006, households on average spent three percent of income on telecommunications.

Combining rural infrastructure projects of different sectors (e.g., telecommunications and electricity) can reduce total government costs (e.g., demand surveys, road shows, supervision) and supply costs (especially operation and maintenance).

First Nation are aboriginal groups (except Inuit and Métis) organized in over 600 governments, mainly in the provinces of Ontario and British Columbia. Inuit are aborigines that live in the Arctic of Canada, Greenland, and Alaska, formerly referred to as Eskimos. Canadian Inuit live mainly in northern Québec, coastal Labrador, and parts of the Northwest Territories, especially on the Arctic Ocean coast. Métis are the descendents of First Nation and Europeans, mainly French, during colonial times. They are found in British Columbia, Alberta, Saskatchewan, Manitoba, Québec, New Brunswick, Nova Scotia, and Ontario, as well in the Northwest Territories.

Some categories of providers might be exempted for competition policy and other reasons. For example, new entrants should not be expected to help finance the incumbent with which they are trying to compete.
The International Finance Corporation (IFC) is the World Bank Group’s arm for investing and lending to the private sector.

OBA is also known as performance-based aid or results-based financing (in the health sector). It is part of a broader effort to ensure that aid is well spent and that the benefits go to the poor.

Andrew Dymond, Sonja Oestmann and Scott McConnell, *Output-based aid in Mongolia: Expanding telecommunications services to rural areas*, OBApproaches Note Number 18 (2008).

The International Development Association is the arm of the World Bank group that provides long-term financing for development at low interest rates to low-income countries.

Id.

Id.

SUBTEL, Decree approving the Guidelines for the Telecommunications Development Fund (Fondo de Desarrollo de las Telecomunicaciones) (December 28, 2001).

Multiprotocol Label Switching packetizes and labels information coming from different network protocols so that the underlying architecture does not have to be changed and routes the information to its destination.

Endnotes

418 EASSy, EASSy Ownership, , available at www.eassy.org/ownership.html. EASSy’s largest shareholder is WIOCC, which is owned by 14 African telecommunications operators and partially funded by a number of development financial institutions, including the World Bank.

419 In this context, ISPs include those wireless operators that offer Internet connectivity.

423 Tata Communications IP, available at www.tatacommunications.com/providers/ip/.

425 SLT Hong Kong, SLT Hong Kong is Gateway to East Asia and US, available at www.slthkg.com/Company.htm.

430 Mark Williams, Broadband for Africa: Developing Backbone Communications Networks, World Bank, p. 6 (2010).

435 Mark Williams, Broadband for Africa: Developing Backbone Communications Networks, World Bank, p. 7 (2010).

See, e.g., numerous comments filed generally in the U.S. Federal Communications Commission proceeding that was established to develop the National Broadband Plan. Notice of Inquiry, In the Matter of A National Broadband Plan for Our Future, FCC No. 09-31 (rel. Apr. 8, 2009).

Endnotes

460 “GPRS offers throughput rates of up to 40 kbit/s…Using EDGE, operators can handle three times more subscribers than GPRS, triple their data rate per subscriber...” See GPRS and EDGE on the GSMA web site, available at gsmworld.com/technology/index.htm.

462 In theory the speed limit of GPRS is 115 kbit/s, but in most networks it is around 35 kbit/s.

467 GSM Association, About Mobile Broadband, available at www.gsmamobilebroadband.com/about/.

Endnotes

484 The ITU has designated the 2450 MHz and 5800 MHz bands for industrial, scientific, and medical (ISM) applications that “must accept harmful interferences.” This is often interpreted to mean that they are considered unregulated. See Frequently asked questions on the ITU-R web site, available at www.itu.int/ITU-R/terrestrial/faq/index.html#q013.

485 Wireless@KL, About, available at www.wirelesskl.com/?q=about.

486 Kevin Fitchard, AT&T tests free Wi-Fi for mobile offload in Times Square, Connected Planet (May 25, 2010), available at blog.connectedplanetonline.com/unfiltered/2010/05/25/att-tests-free-wi-fi-for-mobile-offload-in-times-square/.

487 In the United States, users in remote areas without wireline broadband availability were offered a discount for satellite broadband Internet access (including no installation or equipment charges) through the American Recovery and Reinvestment Act. See HughesNet, Frequently Asked Questions, available at consumer.hughesnet.com/faqs.cfm.

490 FCC, Broadband.gov, About the Consumer Broadband Test (Beta), available at www.broadband.gov/qualitytest/about/.

493 Id.

494 Based on the Pew Research Center’s survey, almost half of the non-Internet adult users surveyed in the United States indicated that they did not use the Internet because they did not find it relevant (they are not interested,

495 Some examples of civil society organizations involved in making Internet and especially broadband services more available, accessible and attractive include Tribal Digital Village, working among Native American reservations in the United States (see http://www.sctdv.net), and CUWiN (Champaign-Urbana Community Wireless Network), developing community-based wireless mesh technologies in various communities in the United States, West Africa, and South Africa (see http://www.cuwin.net).

500 The level of basic literacy required to make effective use of a broadband network may actually be lower than for a narrowband network, because of the greater opportunity to use visuals, sound and icons rather than simple text. This may be important in low-literacy environments.

507 Id.

EC, Connecting Europe at High Speed (2004).

Ovum, Emerging markets paying three times more than rest of the world for broadband (Sept. 20, 2010), available at http://about.datamonitor.com/media/archives/4775.

Id.

530 For a further example, see the global non-profit organization One Economy Corporation, at: http://www.one-economy.com/who-we-are. International locations include Turkey, Jordan, Israel, Cameroon, Kenya, Nigeria, Rwanda, South Africa, and Mexico.

538 The commercial information presented was current as of the preparation of this report. Commercial service offerings in this sector are subject to frequent change.

543 Ultimately, the subsidies were not paid exactly this way; the initial connections were subsidized by government at the rate of €800 and service for the first several years was actually free.

549 “Voice over Broadband” (VoB) is a managed service using IP that provides the same quality as a traditional wireline telephone as well as providing users with their own number and a ringing telephone. In addition, VoB often provides other value-added features such as call waiting, voice mail, and speed dialing, as well as the ability for users to monitor these features online via the provider’s web site.

550 For an example of some of the regulatory obligations relating to IP telephony in Australia, see Australian Communications and Media Authority, VoIP for Service Providers, available at http://www.acma.gov.au/WEB/STANDARD/pc=PC_310067.

553 Id.

554 Id.

555 Id.; see also World Bank, e-Government, available at http://go.worldbank.org/F0JNU90MP0

556 Id.

558 Id.

559 Id.

561 Id.

562 American Library Association, Civic Participation & E-Government.

565 Id.

567 Maintaining the security and privacy of patient health information and records is critical. More information on safeguards that have been developed can be found at: United States http://www.hhs.gov/ocr/privacy/, Canada http://www.ipc.on.ca/english/Home-Page/, United Nations http://www.hon.ch/home1.html.
Endnotes

581 Fredrick Obura, *ICT Board Sh320m grant to promote local content*, The Standard (June 1, 2010), available at http://www.standardmedia.co.ke/InsidePage.php?id=2000010692&cid=14&story=ICT%20Board%20Sh320m%20grant%20to%20promote%20local%20content.

582 More information can be found at http://g3ict.org.

Endnotes

For example a study among mobile users in ten Southeast Asian nations found that Facebook was the top site in five of them, the second ranked site in three, the third ranked in one and not among the top ten in only one of the countries. Opera Software, *State of the Mobile Web, January 2011*, available at http://www.opera.com/swm/2011/01/#snapshot.

Daniel Pimienta, Daniel Prado and Álvaro Blanco, *Twelve years of measuring linguistic diversity in the Internet: balance and perspectives*, United Nations Educational, Scientific and Cultural Organization, p. 35 (2009). This study compares the presence on the Internet of English with European languages. For every 100 pages in English on the Internet in 2007, there were eight in Spanish, 10 in French, six in Italian, three in Portuguese, and 13 in German.

Fredrick Obura, *ICT Board Sh320m grant to promote local content*, The Standard (June 1, 2010), *available at* http://www.standardmedia.co.ke/InsidePage.php?id=2000010692&cid=14&story=ICT%20Board%20Sh320m%20grant%20to%20promote%20local%20content.

For example, there is no standardized keyboard layout for Pashto, an Indo-Iranian language spoken by about 25 million people in Afghanistan, India, Iran, Pakistan, Tajikistan, the UAE and the UK. There is a standard for Pashto text encoding, so some progress is seen. However, there is no standard interface terminology translation in Pashto, which makes achieving digital literacy more challenging. Samad Hussain, Nadir Durrani, and Sana Gul, *Pan-Localization, Survey of Language Computing in Asia* (2005), *available at* http://www.panl10n.net/english/outputs/Survey/Pashto.pdf.

Sri Lanka’s ICT Agency has a Local Languages Initiative to enable ICT in languages such as Sinhala or Tamil (*http://www.icta.lk/en/programmes/pli-development/68-projects/557-local-languages-initiative-lli.html*).

This chapter classifies developing economies into geographic and economic groupings according to World Bank regional and income classifications. See World Bank, *How We Classify Countries*, *available at* http://data.worldbank.org/about/country-classifications.

MDG Monitor, *Tracking the MDGs*, *available at* http://www.mdgmonitor.org/browse_goal.cfm.

ESWA, Broadband for Development in the ESCWA Region (2007), available at http://www.alcatel-lucent.com/wps/portal/lut/p/kxml/04_Sj9SPykssy0xPLMNz0vM0Y_QjzKld4w3MfQFSYGyr6m-pE0ygbxjgiR1H1vfV-P_NxU_QD9gtzQI1H0UAAD_zXgI1/delta/base64xml/L0UayEvUuld3QndJQSEvNEVRKnBSEvNJ9BxRDUi9lbI93dwl1?LSMSG_CABINET=Docs_and_Resource_Ctr&LSMSG_CONTENT_FILE=News_Releases_2007/News_Article_000148.

There is no official definition of a post-conflict economy. They are often locations where civil conflicts have necessitated the intervention of peacekeeping troops. For a list of locations where UN peacekeeping troops are stationed, see: http://www.un.org/en/peacekeeping/.

See the ECTEL web site at: http://www.ectel.int

See “Indian Telecom Sector” on the DOT web site at: http://www.dot.gov.in/osp/Brochure/Brochure.htm

Endnotes

247 See the “Connect a School, Connect a Community” at http://connectaschool.org/en/schools/connectivity/regulation/Section_6.1_Chile_case_study

255 See: “LEADERS OF HIGH-TECH PARKS FROM THE ASIAN SCIENCE PARK ASSOCIATION (ASPA) GATHERED IN HANOI” at http://www.hhtp.gov.vn/69d40b41_c573_4726_b03c_4f86b90969e1_cms_204.hhtp.

258 See the Creative Commons web site at: http://creativecommons.org/.

